KVM: x86: only copy XSAVE state for the supported features
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kvm / cpuid.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/module.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <asm/user.h>
20 #include <asm/xsave.h>
21 #include "cpuid.h"
22 #include "lapic.h"
23 #include "mmu.h"
24 #include "trace.h"
25
26 static u32 xstate_required_size(u64 xstate_bv)
27 {
28         int feature_bit = 0;
29         u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
30
31         xstate_bv &= ~XSTATE_FPSSE;
32         while (xstate_bv) {
33                 if (xstate_bv & 0x1) {
34                         u32 eax, ebx, ecx, edx;
35                         cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
36                         ret = max(ret, eax + ebx);
37                 }
38
39                 xstate_bv >>= 1;
40                 feature_bit++;
41         }
42
43         return ret;
44 }
45
46 void kvm_update_cpuid(struct kvm_vcpu *vcpu)
47 {
48         struct kvm_cpuid_entry2 *best;
49         struct kvm_lapic *apic = vcpu->arch.apic;
50
51         best = kvm_find_cpuid_entry(vcpu, 1, 0);
52         if (!best)
53                 return;
54
55         /* Update OSXSAVE bit */
56         if (cpu_has_xsave && best->function == 0x1) {
57                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
58                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
59                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
60         }
61
62         if (apic) {
63                 if (best->ecx & bit(X86_FEATURE_TSC_DEADLINE_TIMER))
64                         apic->lapic_timer.timer_mode_mask = 3 << 17;
65                 else
66                         apic->lapic_timer.timer_mode_mask = 1 << 17;
67         }
68
69         best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
70         if (!best) {
71                 vcpu->arch.guest_supported_xcr0 = 0;
72                 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
73         } else {
74                 vcpu->arch.guest_supported_xcr0 =
75                         (best->eax | ((u64)best->edx << 32)) &
76                         host_xcr0 & KVM_SUPPORTED_XCR0;
77                 vcpu->arch.guest_xstate_size =
78                         xstate_required_size(vcpu->arch.guest_supported_xcr0);
79         }
80
81         kvm_pmu_cpuid_update(vcpu);
82 }
83
84 static int is_efer_nx(void)
85 {
86         unsigned long long efer = 0;
87
88         rdmsrl_safe(MSR_EFER, &efer);
89         return efer & EFER_NX;
90 }
91
92 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
93 {
94         int i;
95         struct kvm_cpuid_entry2 *e, *entry;
96
97         entry = NULL;
98         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
99                 e = &vcpu->arch.cpuid_entries[i];
100                 if (e->function == 0x80000001) {
101                         entry = e;
102                         break;
103                 }
104         }
105         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
106                 entry->edx &= ~(1 << 20);
107                 printk(KERN_INFO "kvm: guest NX capability removed\n");
108         }
109 }
110
111 /* when an old userspace process fills a new kernel module */
112 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
113                              struct kvm_cpuid *cpuid,
114                              struct kvm_cpuid_entry __user *entries)
115 {
116         int r, i;
117         struct kvm_cpuid_entry *cpuid_entries;
118
119         r = -E2BIG;
120         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
121                 goto out;
122         r = -ENOMEM;
123         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
124         if (!cpuid_entries)
125                 goto out;
126         r = -EFAULT;
127         if (copy_from_user(cpuid_entries, entries,
128                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
129                 goto out_free;
130         for (i = 0; i < cpuid->nent; i++) {
131                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
132                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
133                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
134                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
135                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
136                 vcpu->arch.cpuid_entries[i].index = 0;
137                 vcpu->arch.cpuid_entries[i].flags = 0;
138                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
139                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
140                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
141         }
142         vcpu->arch.cpuid_nent = cpuid->nent;
143         cpuid_fix_nx_cap(vcpu);
144         r = 0;
145         kvm_apic_set_version(vcpu);
146         kvm_x86_ops->cpuid_update(vcpu);
147         kvm_update_cpuid(vcpu);
148
149 out_free:
150         vfree(cpuid_entries);
151 out:
152         return r;
153 }
154
155 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
156                               struct kvm_cpuid2 *cpuid,
157                               struct kvm_cpuid_entry2 __user *entries)
158 {
159         int r;
160
161         r = -E2BIG;
162         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
163                 goto out;
164         r = -EFAULT;
165         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
166                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
167                 goto out;
168         vcpu->arch.cpuid_nent = cpuid->nent;
169         kvm_apic_set_version(vcpu);
170         kvm_x86_ops->cpuid_update(vcpu);
171         kvm_update_cpuid(vcpu);
172         return 0;
173
174 out:
175         return r;
176 }
177
178 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
179                               struct kvm_cpuid2 *cpuid,
180                               struct kvm_cpuid_entry2 __user *entries)
181 {
182         int r;
183
184         r = -E2BIG;
185         if (cpuid->nent < vcpu->arch.cpuid_nent)
186                 goto out;
187         r = -EFAULT;
188         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
189                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
190                 goto out;
191         return 0;
192
193 out:
194         cpuid->nent = vcpu->arch.cpuid_nent;
195         return r;
196 }
197
198 static void cpuid_mask(u32 *word, int wordnum)
199 {
200         *word &= boot_cpu_data.x86_capability[wordnum];
201 }
202
203 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
204                            u32 index)
205 {
206         entry->function = function;
207         entry->index = index;
208         cpuid_count(entry->function, entry->index,
209                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
210         entry->flags = 0;
211 }
212
213 static bool supported_xcr0_bit(unsigned bit)
214 {
215         u64 mask = ((u64)1 << bit);
216
217         return mask & KVM_SUPPORTED_XCR0 & host_xcr0;
218 }
219
220 #define F(x) bit(X86_FEATURE_##x)
221
222 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
223                          u32 index, int *nent, int maxnent)
224 {
225         int r;
226         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
227 #ifdef CONFIG_X86_64
228         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
229                                 ? F(GBPAGES) : 0;
230         unsigned f_lm = F(LM);
231 #else
232         unsigned f_gbpages = 0;
233         unsigned f_lm = 0;
234 #endif
235         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
236         unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
237
238         /* cpuid 1.edx */
239         const u32 kvm_supported_word0_x86_features =
240                 F(FPU) | F(VME) | F(DE) | F(PSE) |
241                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
242                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
243                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
244                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
245                 0 /* Reserved, DS, ACPI */ | F(MMX) |
246                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
247                 0 /* HTT, TM, Reserved, PBE */;
248         /* cpuid 0x80000001.edx */
249         const u32 kvm_supported_word1_x86_features =
250                 F(FPU) | F(VME) | F(DE) | F(PSE) |
251                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
252                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
253                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
254                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
255                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
256                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
257                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
258         /* cpuid 1.ecx */
259         const u32 kvm_supported_word4_x86_features =
260                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
261                 0 /* DS-CPL, VMX, SMX, EST */ |
262                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
263                 F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
264                 F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
265                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
266                 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
267                 F(F16C) | F(RDRAND);
268         /* cpuid 0x80000001.ecx */
269         const u32 kvm_supported_word6_x86_features =
270                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
271                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
272                 F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
273                 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
274
275         /* cpuid 0xC0000001.edx */
276         const u32 kvm_supported_word5_x86_features =
277                 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
278                 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
279                 F(PMM) | F(PMM_EN);
280
281         /* cpuid 7.0.ebx */
282         const u32 kvm_supported_word9_x86_features =
283                 F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
284                 F(BMI2) | F(ERMS) | f_invpcid | F(RTM);
285
286         /* all calls to cpuid_count() should be made on the same cpu */
287         get_cpu();
288
289         r = -E2BIG;
290
291         if (*nent >= maxnent)
292                 goto out;
293
294         do_cpuid_1_ent(entry, function, index);
295         ++*nent;
296
297         switch (function) {
298         case 0:
299                 entry->eax = min(entry->eax, (u32)0xd);
300                 break;
301         case 1:
302                 entry->edx &= kvm_supported_word0_x86_features;
303                 cpuid_mask(&entry->edx, 0);
304                 entry->ecx &= kvm_supported_word4_x86_features;
305                 cpuid_mask(&entry->ecx, 4);
306                 /* we support x2apic emulation even if host does not support
307                  * it since we emulate x2apic in software */
308                 entry->ecx |= F(X2APIC);
309                 break;
310         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
311          * may return different values. This forces us to get_cpu() before
312          * issuing the first command, and also to emulate this annoying behavior
313          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
314         case 2: {
315                 int t, times = entry->eax & 0xff;
316
317                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
318                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
319                 for (t = 1; t < times; ++t) {
320                         if (*nent >= maxnent)
321                                 goto out;
322
323                         do_cpuid_1_ent(&entry[t], function, 0);
324                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
325                         ++*nent;
326                 }
327                 break;
328         }
329         /* function 4 has additional index. */
330         case 4: {
331                 int i, cache_type;
332
333                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
334                 /* read more entries until cache_type is zero */
335                 for (i = 1; ; ++i) {
336                         if (*nent >= maxnent)
337                                 goto out;
338
339                         cache_type = entry[i - 1].eax & 0x1f;
340                         if (!cache_type)
341                                 break;
342                         do_cpuid_1_ent(&entry[i], function, i);
343                         entry[i].flags |=
344                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
345                         ++*nent;
346                 }
347                 break;
348         }
349         case 7: {
350                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
351                 /* Mask ebx against host capability word 9 */
352                 if (index == 0) {
353                         entry->ebx &= kvm_supported_word9_x86_features;
354                         cpuid_mask(&entry->ebx, 9);
355                         // TSC_ADJUST is emulated
356                         entry->ebx |= F(TSC_ADJUST);
357                 } else
358                         entry->ebx = 0;
359                 entry->eax = 0;
360                 entry->ecx = 0;
361                 entry->edx = 0;
362                 break;
363         }
364         case 9:
365                 break;
366         case 0xa: { /* Architectural Performance Monitoring */
367                 struct x86_pmu_capability cap;
368                 union cpuid10_eax eax;
369                 union cpuid10_edx edx;
370
371                 perf_get_x86_pmu_capability(&cap);
372
373                 /*
374                  * Only support guest architectural pmu on a host
375                  * with architectural pmu.
376                  */
377                 if (!cap.version)
378                         memset(&cap, 0, sizeof(cap));
379
380                 eax.split.version_id = min(cap.version, 2);
381                 eax.split.num_counters = cap.num_counters_gp;
382                 eax.split.bit_width = cap.bit_width_gp;
383                 eax.split.mask_length = cap.events_mask_len;
384
385                 edx.split.num_counters_fixed = cap.num_counters_fixed;
386                 edx.split.bit_width_fixed = cap.bit_width_fixed;
387                 edx.split.reserved = 0;
388
389                 entry->eax = eax.full;
390                 entry->ebx = cap.events_mask;
391                 entry->ecx = 0;
392                 entry->edx = edx.full;
393                 break;
394         }
395         /* function 0xb has additional index. */
396         case 0xb: {
397                 int i, level_type;
398
399                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
400                 /* read more entries until level_type is zero */
401                 for (i = 1; ; ++i) {
402                         if (*nent >= maxnent)
403                                 goto out;
404
405                         level_type = entry[i - 1].ecx & 0xff00;
406                         if (!level_type)
407                                 break;
408                         do_cpuid_1_ent(&entry[i], function, i);
409                         entry[i].flags |=
410                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
411                         ++*nent;
412                 }
413                 break;
414         }
415         case 0xd: {
416                 int idx, i;
417
418                 entry->eax &= host_xcr0 & KVM_SUPPORTED_XCR0;
419                 entry->edx &= (host_xcr0 & KVM_SUPPORTED_XCR0) >> 32;
420                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
421                 for (idx = 1, i = 1; idx < 64; ++idx) {
422                         if (*nent >= maxnent)
423                                 goto out;
424
425                         do_cpuid_1_ent(&entry[i], function, idx);
426                         if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
427                                 continue;
428                         entry[i].flags |=
429                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
430                         ++*nent;
431                         ++i;
432                 }
433                 break;
434         }
435         case KVM_CPUID_SIGNATURE: {
436                 static const char signature[12] = "KVMKVMKVM\0\0";
437                 const u32 *sigptr = (const u32 *)signature;
438                 entry->eax = KVM_CPUID_FEATURES;
439                 entry->ebx = sigptr[0];
440                 entry->ecx = sigptr[1];
441                 entry->edx = sigptr[2];
442                 break;
443         }
444         case KVM_CPUID_FEATURES:
445                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
446                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
447                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
448                              (1 << KVM_FEATURE_ASYNC_PF) |
449                              (1 << KVM_FEATURE_PV_EOI) |
450                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
451                              (1 << KVM_FEATURE_PV_UNHALT);
452
453                 if (sched_info_on())
454                         entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
455
456                 entry->ebx = 0;
457                 entry->ecx = 0;
458                 entry->edx = 0;
459                 break;
460         case 0x80000000:
461                 entry->eax = min(entry->eax, 0x8000001a);
462                 break;
463         case 0x80000001:
464                 entry->edx &= kvm_supported_word1_x86_features;
465                 cpuid_mask(&entry->edx, 1);
466                 entry->ecx &= kvm_supported_word6_x86_features;
467                 cpuid_mask(&entry->ecx, 6);
468                 break;
469         case 0x80000008: {
470                 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
471                 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
472                 unsigned phys_as = entry->eax & 0xff;
473
474                 if (!g_phys_as)
475                         g_phys_as = phys_as;
476                 entry->eax = g_phys_as | (virt_as << 8);
477                 entry->ebx = entry->edx = 0;
478                 break;
479         }
480         case 0x80000019:
481                 entry->ecx = entry->edx = 0;
482                 break;
483         case 0x8000001a:
484                 break;
485         case 0x8000001d:
486                 break;
487         /*Add support for Centaur's CPUID instruction*/
488         case 0xC0000000:
489                 /*Just support up to 0xC0000004 now*/
490                 entry->eax = min(entry->eax, 0xC0000004);
491                 break;
492         case 0xC0000001:
493                 entry->edx &= kvm_supported_word5_x86_features;
494                 cpuid_mask(&entry->edx, 5);
495                 break;
496         case 3: /* Processor serial number */
497         case 5: /* MONITOR/MWAIT */
498         case 6: /* Thermal management */
499         case 0x80000007: /* Advanced power management */
500         case 0xC0000002:
501         case 0xC0000003:
502         case 0xC0000004:
503         default:
504                 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
505                 break;
506         }
507
508         kvm_x86_ops->set_supported_cpuid(function, entry);
509
510         r = 0;
511
512 out:
513         put_cpu();
514
515         return r;
516 }
517
518 #undef F
519
520 struct kvm_cpuid_param {
521         u32 func;
522         u32 idx;
523         bool has_leaf_count;
524         bool (*qualifier)(const struct kvm_cpuid_param *param);
525 };
526
527 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
528 {
529         return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
530 }
531
532 int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
533                                       struct kvm_cpuid_entry2 __user *entries)
534 {
535         struct kvm_cpuid_entry2 *cpuid_entries;
536         int limit, nent = 0, r = -E2BIG, i;
537         u32 func;
538         static const struct kvm_cpuid_param param[] = {
539                 { .func = 0, .has_leaf_count = true },
540                 { .func = 0x80000000, .has_leaf_count = true },
541                 { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
542                 { .func = KVM_CPUID_SIGNATURE },
543                 { .func = KVM_CPUID_FEATURES },
544         };
545
546         if (cpuid->nent < 1)
547                 goto out;
548         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
549                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
550         r = -ENOMEM;
551         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
552         if (!cpuid_entries)
553                 goto out;
554
555         r = 0;
556         for (i = 0; i < ARRAY_SIZE(param); i++) {
557                 const struct kvm_cpuid_param *ent = &param[i];
558
559                 if (ent->qualifier && !ent->qualifier(ent))
560                         continue;
561
562                 r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
563                                 &nent, cpuid->nent);
564
565                 if (r)
566                         goto out_free;
567
568                 if (!ent->has_leaf_count)
569                         continue;
570
571                 limit = cpuid_entries[nent - 1].eax;
572                 for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
573                         r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
574                                      &nent, cpuid->nent);
575
576                 if (r)
577                         goto out_free;
578         }
579
580         r = -EFAULT;
581         if (copy_to_user(entries, cpuid_entries,
582                          nent * sizeof(struct kvm_cpuid_entry2)))
583                 goto out_free;
584         cpuid->nent = nent;
585         r = 0;
586
587 out_free:
588         vfree(cpuid_entries);
589 out:
590         return r;
591 }
592
593 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
594 {
595         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
596         int j, nent = vcpu->arch.cpuid_nent;
597
598         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
599         /* when no next entry is found, the current entry[i] is reselected */
600         for (j = i + 1; ; j = (j + 1) % nent) {
601                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
602                 if (ej->function == e->function) {
603                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
604                         return j;
605                 }
606         }
607         return 0; /* silence gcc, even though control never reaches here */
608 }
609
610 /* find an entry with matching function, matching index (if needed), and that
611  * should be read next (if it's stateful) */
612 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
613         u32 function, u32 index)
614 {
615         if (e->function != function)
616                 return 0;
617         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
618                 return 0;
619         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
620             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
621                 return 0;
622         return 1;
623 }
624
625 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
626                                               u32 function, u32 index)
627 {
628         int i;
629         struct kvm_cpuid_entry2 *best = NULL;
630
631         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
632                 struct kvm_cpuid_entry2 *e;
633
634                 e = &vcpu->arch.cpuid_entries[i];
635                 if (is_matching_cpuid_entry(e, function, index)) {
636                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
637                                 move_to_next_stateful_cpuid_entry(vcpu, i);
638                         best = e;
639                         break;
640                 }
641         }
642         return best;
643 }
644 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
645
646 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
647 {
648         struct kvm_cpuid_entry2 *best;
649
650         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
651         if (!best || best->eax < 0x80000008)
652                 goto not_found;
653         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
654         if (best)
655                 return best->eax & 0xff;
656 not_found:
657         return 36;
658 }
659
660 /*
661  * If no match is found, check whether we exceed the vCPU's limit
662  * and return the content of the highest valid _standard_ leaf instead.
663  * This is to satisfy the CPUID specification.
664  */
665 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
666                                                   u32 function, u32 index)
667 {
668         struct kvm_cpuid_entry2 *maxlevel;
669
670         maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
671         if (!maxlevel || maxlevel->eax >= function)
672                 return NULL;
673         if (function & 0x80000000) {
674                 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
675                 if (!maxlevel)
676                         return NULL;
677         }
678         return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
679 }
680
681 void kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
682 {
683         u32 function = *eax, index = *ecx;
684         struct kvm_cpuid_entry2 *best;
685
686         best = kvm_find_cpuid_entry(vcpu, function, index);
687
688         if (!best)
689                 best = check_cpuid_limit(vcpu, function, index);
690
691         if (best) {
692                 *eax = best->eax;
693                 *ebx = best->ebx;
694                 *ecx = best->ecx;
695                 *edx = best->edx;
696         } else
697                 *eax = *ebx = *ecx = *edx = 0;
698 }
699 EXPORT_SYMBOL_GPL(kvm_cpuid);
700
701 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
702 {
703         u32 function, eax, ebx, ecx, edx;
704
705         function = eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
706         ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
707         kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx);
708         kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
709         kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
710         kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
711         kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
712         kvm_x86_ops->skip_emulated_instruction(vcpu);
713         trace_kvm_cpuid(function, eax, ebx, ecx, edx);
714 }
715 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);