Merge branch 'for-3.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kernel / smp.c
1 /*
2  *      Intel SMP support routines.
3  *
4  *      (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5  *      (c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6  *      (c) 2002,2003 Andi Kleen, SuSE Labs.
7  *
8  *      i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
9  *
10  *      This code is released under the GNU General Public License version 2 or
11  *      later.
12  */
13
14 #include <linux/init.h>
15
16 #include <linux/mm.h>
17 #include <linux/delay.h>
18 #include <linux/spinlock.h>
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mc146818rtc.h>
22 #include <linux/cache.h>
23 #include <linux/interrupt.h>
24 #include <linux/cpu.h>
25 #include <linux/gfp.h>
26
27 #include <asm/mtrr.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/proto.h>
31 #include <asm/apic.h>
32 #include <asm/nmi.h>
33 /*
34  *      Some notes on x86 processor bugs affecting SMP operation:
35  *
36  *      Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
37  *      The Linux implications for SMP are handled as follows:
38  *
39  *      Pentium III / [Xeon]
40  *              None of the E1AP-E3AP errata are visible to the user.
41  *
42  *      E1AP.   see PII A1AP
43  *      E2AP.   see PII A2AP
44  *      E3AP.   see PII A3AP
45  *
46  *      Pentium II / [Xeon]
47  *              None of the A1AP-A3AP errata are visible to the user.
48  *
49  *      A1AP.   see PPro 1AP
50  *      A2AP.   see PPro 2AP
51  *      A3AP.   see PPro 7AP
52  *
53  *      Pentium Pro
54  *              None of 1AP-9AP errata are visible to the normal user,
55  *      except occasional delivery of 'spurious interrupt' as trap #15.
56  *      This is very rare and a non-problem.
57  *
58  *      1AP.    Linux maps APIC as non-cacheable
59  *      2AP.    worked around in hardware
60  *      3AP.    fixed in C0 and above steppings microcode update.
61  *              Linux does not use excessive STARTUP_IPIs.
62  *      4AP.    worked around in hardware
63  *      5AP.    symmetric IO mode (normal Linux operation) not affected.
64  *              'noapic' mode has vector 0xf filled out properly.
65  *      6AP.    'noapic' mode might be affected - fixed in later steppings
66  *      7AP.    We do not assume writes to the LVT deassering IRQs
67  *      8AP.    We do not enable low power mode (deep sleep) during MP bootup
68  *      9AP.    We do not use mixed mode
69  *
70  *      Pentium
71  *              There is a marginal case where REP MOVS on 100MHz SMP
72  *      machines with B stepping processors can fail. XXX should provide
73  *      an L1cache=Writethrough or L1cache=off option.
74  *
75  *              B stepping CPUs may hang. There are hardware work arounds
76  *      for this. We warn about it in case your board doesn't have the work
77  *      arounds. Basically that's so I can tell anyone with a B stepping
78  *      CPU and SMP problems "tough".
79  *
80  *      Specific items [From Pentium Processor Specification Update]
81  *
82  *      1AP.    Linux doesn't use remote read
83  *      2AP.    Linux doesn't trust APIC errors
84  *      3AP.    We work around this
85  *      4AP.    Linux never generated 3 interrupts of the same priority
86  *              to cause a lost local interrupt.
87  *      5AP.    Remote read is never used
88  *      6AP.    not affected - worked around in hardware
89  *      7AP.    not affected - worked around in hardware
90  *      8AP.    worked around in hardware - we get explicit CS errors if not
91  *      9AP.    only 'noapic' mode affected. Might generate spurious
92  *              interrupts, we log only the first one and count the
93  *              rest silently.
94  *      10AP.   not affected - worked around in hardware
95  *      11AP.   Linux reads the APIC between writes to avoid this, as per
96  *              the documentation. Make sure you preserve this as it affects
97  *              the C stepping chips too.
98  *      12AP.   not affected - worked around in hardware
99  *      13AP.   not affected - worked around in hardware
100  *      14AP.   we always deassert INIT during bootup
101  *      15AP.   not affected - worked around in hardware
102  *      16AP.   not affected - worked around in hardware
103  *      17AP.   not affected - worked around in hardware
104  *      18AP.   not affected - worked around in hardware
105  *      19AP.   not affected - worked around in BIOS
106  *
107  *      If this sounds worrying believe me these bugs are either ___RARE___,
108  *      or are signal timing bugs worked around in hardware and there's
109  *      about nothing of note with C stepping upwards.
110  */
111
112 static atomic_t stopping_cpu = ATOMIC_INIT(-1);
113 static bool smp_no_nmi_ipi = false;
114
115 /*
116  * this function sends a 'reschedule' IPI to another CPU.
117  * it goes straight through and wastes no time serializing
118  * anything. Worst case is that we lose a reschedule ...
119  */
120 static void native_smp_send_reschedule(int cpu)
121 {
122         if (unlikely(cpu_is_offline(cpu))) {
123                 WARN_ON(1);
124                 return;
125         }
126         apic->send_IPI_mask(cpumask_of(cpu), RESCHEDULE_VECTOR);
127 }
128
129 void native_send_call_func_single_ipi(int cpu)
130 {
131         apic->send_IPI_mask(cpumask_of(cpu), CALL_FUNCTION_SINGLE_VECTOR);
132 }
133
134 void native_send_call_func_ipi(const struct cpumask *mask)
135 {
136         cpumask_var_t allbutself;
137
138         if (!alloc_cpumask_var(&allbutself, GFP_ATOMIC)) {
139                 apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
140                 return;
141         }
142
143         cpumask_copy(allbutself, cpu_online_mask);
144         cpumask_clear_cpu(smp_processor_id(), allbutself);
145
146         if (cpumask_equal(mask, allbutself) &&
147             cpumask_equal(cpu_online_mask, cpu_callout_mask))
148                 apic->send_IPI_allbutself(CALL_FUNCTION_VECTOR);
149         else
150                 apic->send_IPI_mask(mask, CALL_FUNCTION_VECTOR);
151
152         free_cpumask_var(allbutself);
153 }
154
155 static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
156 {
157         /* We are registered on stopping cpu too, avoid spurious NMI */
158         if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
159                 return NMI_HANDLED;
160
161         stop_this_cpu(NULL);
162
163         return NMI_HANDLED;
164 }
165
166 /*
167  * this function calls the 'stop' function on all other CPUs in the system.
168  */
169
170 asmlinkage void smp_reboot_interrupt(void)
171 {
172         ack_APIC_irq();
173         irq_enter();
174         stop_this_cpu(NULL);
175         irq_exit();
176 }
177
178 static void native_stop_other_cpus(int wait)
179 {
180         unsigned long flags;
181         unsigned long timeout;
182
183         if (reboot_force)
184                 return;
185
186         /*
187          * Use an own vector here because smp_call_function
188          * does lots of things not suitable in a panic situation.
189          */
190
191         /*
192          * We start by using the REBOOT_VECTOR irq.
193          * The irq is treated as a sync point to allow critical
194          * regions of code on other cpus to release their spin locks
195          * and re-enable irqs.  Jumping straight to an NMI might
196          * accidentally cause deadlocks with further shutdown/panic
197          * code.  By syncing, we give the cpus up to one second to
198          * finish their work before we force them off with the NMI.
199          */
200         if (num_online_cpus() > 1) {
201                 /* did someone beat us here? */
202                 if (atomic_cmpxchg(&stopping_cpu, -1, safe_smp_processor_id()) != -1)
203                         return;
204
205                 /* sync above data before sending IRQ */
206                 wmb();
207
208                 apic->send_IPI_allbutself(REBOOT_VECTOR);
209
210                 /*
211                  * Don't wait longer than a second if the caller
212                  * didn't ask us to wait.
213                  */
214                 timeout = USEC_PER_SEC;
215                 while (num_online_cpus() > 1 && (wait || timeout--))
216                         udelay(1);
217         }
218         
219         /* if the REBOOT_VECTOR didn't work, try with the NMI */
220         if ((num_online_cpus() > 1) && (!smp_no_nmi_ipi))  {
221                 if (register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
222                                          NMI_FLAG_FIRST, "smp_stop"))
223                         /* Note: we ignore failures here */
224                         /* Hope the REBOOT_IRQ is good enough */
225                         goto finish;
226
227                 /* sync above data before sending IRQ */
228                 wmb();
229
230                 pr_emerg("Shutting down cpus with NMI\n");
231
232                 apic->send_IPI_allbutself(NMI_VECTOR);
233
234                 /*
235                  * Don't wait longer than a 10 ms if the caller
236                  * didn't ask us to wait.
237                  */
238                 timeout = USEC_PER_MSEC * 10;
239                 while (num_online_cpus() > 1 && (wait || timeout--))
240                         udelay(1);
241         }
242
243 finish:
244         local_irq_save(flags);
245         disable_local_APIC();
246         local_irq_restore(flags);
247 }
248
249 /*
250  * Reschedule call back.
251  */
252 void smp_reschedule_interrupt(struct pt_regs *regs)
253 {
254         ack_APIC_irq();
255         inc_irq_stat(irq_resched_count);
256         scheduler_ipi();
257         /*
258          * KVM uses this interrupt to force a cpu out of guest mode
259          */
260 }
261
262 void smp_call_function_interrupt(struct pt_regs *regs)
263 {
264         ack_APIC_irq();
265         irq_enter();
266         generic_smp_call_function_interrupt();
267         inc_irq_stat(irq_call_count);
268         irq_exit();
269 }
270
271 void smp_call_function_single_interrupt(struct pt_regs *regs)
272 {
273         ack_APIC_irq();
274         irq_enter();
275         generic_smp_call_function_single_interrupt();
276         inc_irq_stat(irq_call_count);
277         irq_exit();
278 }
279
280 static int __init nonmi_ipi_setup(char *str)
281 {
282         smp_no_nmi_ipi = true;
283         return 1;
284 }
285
286 __setup("nonmi_ipi", nonmi_ipi_setup);
287
288 struct smp_ops smp_ops = {
289         .smp_prepare_boot_cpu   = native_smp_prepare_boot_cpu,
290         .smp_prepare_cpus       = native_smp_prepare_cpus,
291         .smp_cpus_done          = native_smp_cpus_done,
292
293         .stop_other_cpus        = native_stop_other_cpus,
294         .smp_send_reschedule    = native_smp_send_reschedule,
295
296         .cpu_up                 = native_cpu_up,
297         .cpu_die                = native_cpu_die,
298         .cpu_disable            = native_cpu_disable,
299         .play_dead              = native_play_dead,
300
301         .send_call_func_ipi     = native_send_call_func_ipi,
302         .send_call_func_single_ipi = native_send_call_func_single_ipi,
303 };
304 EXPORT_SYMBOL_GPL(smp_ops);