Merge branch 'timers-nohz-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[firefly-linux-kernel-4.4.55.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/export.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/i8253.h>
8 #include <linux/slab.h>
9 #include <linux/hpet.h>
10 #include <linux/init.h>
11 #include <linux/cpu.h>
12 #include <linux/pm.h>
13 #include <linux/io.h>
14
15 #include <asm/irqdomain.h>
16 #include <asm/fixmap.h>
17 #include <asm/hpet.h>
18 #include <asm/time.h>
19
20 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
21
22 /* FSEC = 10^-15
23    NSEC = 10^-9 */
24 #define FSEC_PER_NSEC                   1000000L
25
26 #define HPET_DEV_USED_BIT               2
27 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
28 #define HPET_DEV_VALID                  0x8
29 #define HPET_DEV_FSB_CAP                0x1000
30 #define HPET_DEV_PERI_CAP               0x2000
31
32 #define HPET_MIN_CYCLES                 128
33 #define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
34
35 /*
36  * HPET address is set in acpi/boot.c, when an ACPI entry exists
37  */
38 unsigned long                           hpet_address;
39 u8                                      hpet_blockid; /* OS timer block num */
40 u8                                      hpet_msi_disable;
41
42 #ifdef CONFIG_PCI_MSI
43 static unsigned long                    hpet_num_timers;
44 #endif
45 static void __iomem                     *hpet_virt_address;
46
47 struct hpet_dev {
48         struct clock_event_device       evt;
49         unsigned int                    num;
50         int                             cpu;
51         unsigned int                    irq;
52         unsigned int                    flags;
53         char                            name[10];
54 };
55
56 inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
57 {
58         return container_of(evtdev, struct hpet_dev, evt);
59 }
60
61 inline unsigned int hpet_readl(unsigned int a)
62 {
63         return readl(hpet_virt_address + a);
64 }
65
66 static inline void hpet_writel(unsigned int d, unsigned int a)
67 {
68         writel(d, hpet_virt_address + a);
69 }
70
71 #ifdef CONFIG_X86_64
72 #include <asm/pgtable.h>
73 #endif
74
75 static inline void hpet_set_mapping(void)
76 {
77         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
78 }
79
80 static inline void hpet_clear_mapping(void)
81 {
82         iounmap(hpet_virt_address);
83         hpet_virt_address = NULL;
84 }
85
86 /*
87  * HPET command line enable / disable
88  */
89 int boot_hpet_disable;
90 int hpet_force_user;
91 static int hpet_verbose;
92
93 static int __init hpet_setup(char *str)
94 {
95         while (str) {
96                 char *next = strchr(str, ',');
97
98                 if (next)
99                         *next++ = 0;
100                 if (!strncmp("disable", str, 7))
101                         boot_hpet_disable = 1;
102                 if (!strncmp("force", str, 5))
103                         hpet_force_user = 1;
104                 if (!strncmp("verbose", str, 7))
105                         hpet_verbose = 1;
106                 str = next;
107         }
108         return 1;
109 }
110 __setup("hpet=", hpet_setup);
111
112 static int __init disable_hpet(char *str)
113 {
114         boot_hpet_disable = 1;
115         return 1;
116 }
117 __setup("nohpet", disable_hpet);
118
119 static inline int is_hpet_capable(void)
120 {
121         return !boot_hpet_disable && hpet_address;
122 }
123
124 /*
125  * HPET timer interrupt enable / disable
126  */
127 static int hpet_legacy_int_enabled;
128
129 /**
130  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
131  */
132 int is_hpet_enabled(void)
133 {
134         return is_hpet_capable() && hpet_legacy_int_enabled;
135 }
136 EXPORT_SYMBOL_GPL(is_hpet_enabled);
137
138 static void _hpet_print_config(const char *function, int line)
139 {
140         u32 i, timers, l, h;
141         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
142         l = hpet_readl(HPET_ID);
143         h = hpet_readl(HPET_PERIOD);
144         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
145         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
146         l = hpet_readl(HPET_CFG);
147         h = hpet_readl(HPET_STATUS);
148         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
149         l = hpet_readl(HPET_COUNTER);
150         h = hpet_readl(HPET_COUNTER+4);
151         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
152
153         for (i = 0; i < timers; i++) {
154                 l = hpet_readl(HPET_Tn_CFG(i));
155                 h = hpet_readl(HPET_Tn_CFG(i)+4);
156                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
157                        i, l, h);
158                 l = hpet_readl(HPET_Tn_CMP(i));
159                 h = hpet_readl(HPET_Tn_CMP(i)+4);
160                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
161                        i, l, h);
162                 l = hpet_readl(HPET_Tn_ROUTE(i));
163                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
164                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
165                        i, l, h);
166         }
167 }
168
169 #define hpet_print_config()                                     \
170 do {                                                            \
171         if (hpet_verbose)                                       \
172                 _hpet_print_config(__func__, __LINE__); \
173 } while (0)
174
175 /*
176  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
177  * timer 0 and timer 1 in case of RTC emulation.
178  */
179 #ifdef CONFIG_HPET
180
181 static void hpet_reserve_msi_timers(struct hpet_data *hd);
182
183 static void hpet_reserve_platform_timers(unsigned int id)
184 {
185         struct hpet __iomem *hpet = hpet_virt_address;
186         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
187         unsigned int nrtimers, i;
188         struct hpet_data hd;
189
190         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
191
192         memset(&hd, 0, sizeof(hd));
193         hd.hd_phys_address      = hpet_address;
194         hd.hd_address           = hpet;
195         hd.hd_nirqs             = nrtimers;
196         hpet_reserve_timer(&hd, 0);
197
198 #ifdef CONFIG_HPET_EMULATE_RTC
199         hpet_reserve_timer(&hd, 1);
200 #endif
201
202         /*
203          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
204          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
205          * don't bother configuring *any* comparator interrupts.
206          */
207         hd.hd_irq[0] = HPET_LEGACY_8254;
208         hd.hd_irq[1] = HPET_LEGACY_RTC;
209
210         for (i = 2; i < nrtimers; timer++, i++) {
211                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
212                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
213         }
214
215         hpet_reserve_msi_timers(&hd);
216
217         hpet_alloc(&hd);
218
219 }
220 #else
221 static void hpet_reserve_platform_timers(unsigned int id) { }
222 #endif
223
224 /*
225  * Common hpet info
226  */
227 static unsigned long hpet_freq;
228
229 static void hpet_legacy_set_mode(enum clock_event_mode mode,
230                           struct clock_event_device *evt);
231 static int hpet_legacy_next_event(unsigned long delta,
232                            struct clock_event_device *evt);
233
234 /*
235  * The hpet clock event device
236  */
237 static struct clock_event_device hpet_clockevent = {
238         .name           = "hpet",
239         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
240         .set_mode       = hpet_legacy_set_mode,
241         .set_next_event = hpet_legacy_next_event,
242         .irq            = 0,
243         .rating         = 50,
244 };
245
246 static void hpet_stop_counter(void)
247 {
248         unsigned long cfg = hpet_readl(HPET_CFG);
249         cfg &= ~HPET_CFG_ENABLE;
250         hpet_writel(cfg, HPET_CFG);
251 }
252
253 static void hpet_reset_counter(void)
254 {
255         hpet_writel(0, HPET_COUNTER);
256         hpet_writel(0, HPET_COUNTER + 4);
257 }
258
259 static void hpet_start_counter(void)
260 {
261         unsigned int cfg = hpet_readl(HPET_CFG);
262         cfg |= HPET_CFG_ENABLE;
263         hpet_writel(cfg, HPET_CFG);
264 }
265
266 static void hpet_restart_counter(void)
267 {
268         hpet_stop_counter();
269         hpet_reset_counter();
270         hpet_start_counter();
271 }
272
273 static void hpet_resume_device(void)
274 {
275         force_hpet_resume();
276 }
277
278 static void hpet_resume_counter(struct clocksource *cs)
279 {
280         hpet_resume_device();
281         hpet_restart_counter();
282 }
283
284 static void hpet_enable_legacy_int(void)
285 {
286         unsigned int cfg = hpet_readl(HPET_CFG);
287
288         cfg |= HPET_CFG_LEGACY;
289         hpet_writel(cfg, HPET_CFG);
290         hpet_legacy_int_enabled = 1;
291 }
292
293 static void hpet_legacy_clockevent_register(void)
294 {
295         /* Start HPET legacy interrupts */
296         hpet_enable_legacy_int();
297
298         /*
299          * Start hpet with the boot cpu mask and make it
300          * global after the IO_APIC has been initialized.
301          */
302         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
303         clockevents_config_and_register(&hpet_clockevent, hpet_freq,
304                                         HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
305         global_clock_event = &hpet_clockevent;
306         printk(KERN_DEBUG "hpet clockevent registered\n");
307 }
308
309 static void hpet_set_mode(enum clock_event_mode mode,
310                           struct clock_event_device *evt, int timer)
311 {
312         unsigned int cfg, cmp, now;
313         uint64_t delta;
314
315         switch (mode) {
316         case CLOCK_EVT_MODE_PERIODIC:
317                 hpet_stop_counter();
318                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
319                 delta >>= evt->shift;
320                 now = hpet_readl(HPET_COUNTER);
321                 cmp = now + (unsigned int) delta;
322                 cfg = hpet_readl(HPET_Tn_CFG(timer));
323                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
324                        HPET_TN_SETVAL | HPET_TN_32BIT;
325                 hpet_writel(cfg, HPET_Tn_CFG(timer));
326                 hpet_writel(cmp, HPET_Tn_CMP(timer));
327                 udelay(1);
328                 /*
329                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
330                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
331                  * bit is automatically cleared after the first write.
332                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
333                  * Publication # 24674)
334                  */
335                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
336                 hpet_start_counter();
337                 hpet_print_config();
338                 break;
339
340         case CLOCK_EVT_MODE_ONESHOT:
341                 cfg = hpet_readl(HPET_Tn_CFG(timer));
342                 cfg &= ~HPET_TN_PERIODIC;
343                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
344                 hpet_writel(cfg, HPET_Tn_CFG(timer));
345                 break;
346
347         case CLOCK_EVT_MODE_UNUSED:
348         case CLOCK_EVT_MODE_SHUTDOWN:
349                 cfg = hpet_readl(HPET_Tn_CFG(timer));
350                 cfg &= ~HPET_TN_ENABLE;
351                 hpet_writel(cfg, HPET_Tn_CFG(timer));
352                 break;
353
354         case CLOCK_EVT_MODE_RESUME:
355                 if (timer == 0) {
356                         hpet_enable_legacy_int();
357                 } else {
358                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
359                         irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
360                         disable_irq(hdev->irq);
361                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
362                         enable_irq(hdev->irq);
363                 }
364                 hpet_print_config();
365                 break;
366         }
367 }
368
369 static int hpet_next_event(unsigned long delta,
370                            struct clock_event_device *evt, int timer)
371 {
372         u32 cnt;
373         s32 res;
374
375         cnt = hpet_readl(HPET_COUNTER);
376         cnt += (u32) delta;
377         hpet_writel(cnt, HPET_Tn_CMP(timer));
378
379         /*
380          * HPETs are a complete disaster. The compare register is
381          * based on a equal comparison and neither provides a less
382          * than or equal functionality (which would require to take
383          * the wraparound into account) nor a simple count down event
384          * mode. Further the write to the comparator register is
385          * delayed internally up to two HPET clock cycles in certain
386          * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
387          * longer delays. We worked around that by reading back the
388          * compare register, but that required another workaround for
389          * ICH9,10 chips where the first readout after write can
390          * return the old stale value. We already had a minimum
391          * programming delta of 5us enforced, but a NMI or SMI hitting
392          * between the counter readout and the comparator write can
393          * move us behind that point easily. Now instead of reading
394          * the compare register back several times, we make the ETIME
395          * decision based on the following: Return ETIME if the
396          * counter value after the write is less than HPET_MIN_CYCLES
397          * away from the event or if the counter is already ahead of
398          * the event. The minimum programming delta for the generic
399          * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
400          */
401         res = (s32)(cnt - hpet_readl(HPET_COUNTER));
402
403         return res < HPET_MIN_CYCLES ? -ETIME : 0;
404 }
405
406 static void hpet_legacy_set_mode(enum clock_event_mode mode,
407                         struct clock_event_device *evt)
408 {
409         hpet_set_mode(mode, evt, 0);
410 }
411
412 static int hpet_legacy_next_event(unsigned long delta,
413                         struct clock_event_device *evt)
414 {
415         return hpet_next_event(delta, evt, 0);
416 }
417
418 /*
419  * HPET MSI Support
420  */
421 #ifdef CONFIG_PCI_MSI
422
423 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
424 static struct hpet_dev  *hpet_devs;
425 static struct irq_domain *hpet_domain;
426
427 void hpet_msi_unmask(struct irq_data *data)
428 {
429         struct hpet_dev *hdev = data->handler_data;
430         unsigned int cfg;
431
432         /* unmask it */
433         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
434         cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
435         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
436 }
437
438 void hpet_msi_mask(struct irq_data *data)
439 {
440         struct hpet_dev *hdev = data->handler_data;
441         unsigned int cfg;
442
443         /* mask it */
444         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
445         cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
446         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
447 }
448
449 void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
450 {
451         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
452         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
453 }
454
455 void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
456 {
457         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
458         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
459         msg->address_hi = 0;
460 }
461
462 static void hpet_msi_set_mode(enum clock_event_mode mode,
463                                 struct clock_event_device *evt)
464 {
465         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
466         hpet_set_mode(mode, evt, hdev->num);
467 }
468
469 static int hpet_msi_next_event(unsigned long delta,
470                                 struct clock_event_device *evt)
471 {
472         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
473         return hpet_next_event(delta, evt, hdev->num);
474 }
475
476 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
477 {
478         struct hpet_dev *dev = (struct hpet_dev *)data;
479         struct clock_event_device *hevt = &dev->evt;
480
481         if (!hevt->event_handler) {
482                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
483                                 dev->num);
484                 return IRQ_HANDLED;
485         }
486
487         hevt->event_handler(hevt);
488         return IRQ_HANDLED;
489 }
490
491 static int hpet_setup_irq(struct hpet_dev *dev)
492 {
493
494         if (request_irq(dev->irq, hpet_interrupt_handler,
495                         IRQF_TIMER | IRQF_NOBALANCING,
496                         dev->name, dev))
497                 return -1;
498
499         disable_irq(dev->irq);
500         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
501         enable_irq(dev->irq);
502
503         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
504                          dev->name, dev->irq);
505
506         return 0;
507 }
508
509 /* This should be called in specific @cpu */
510 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
511 {
512         struct clock_event_device *evt = &hdev->evt;
513
514         WARN_ON(cpu != smp_processor_id());
515         if (!(hdev->flags & HPET_DEV_VALID))
516                 return;
517
518         hdev->cpu = cpu;
519         per_cpu(cpu_hpet_dev, cpu) = hdev;
520         evt->name = hdev->name;
521         hpet_setup_irq(hdev);
522         evt->irq = hdev->irq;
523
524         evt->rating = 110;
525         evt->features = CLOCK_EVT_FEAT_ONESHOT;
526         if (hdev->flags & HPET_DEV_PERI_CAP)
527                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
528
529         evt->set_mode = hpet_msi_set_mode;
530         evt->set_next_event = hpet_msi_next_event;
531         evt->cpumask = cpumask_of(hdev->cpu);
532
533         clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
534                                         0x7FFFFFFF);
535 }
536
537 #ifdef CONFIG_HPET
538 /* Reserve at least one timer for userspace (/dev/hpet) */
539 #define RESERVE_TIMERS 1
540 #else
541 #define RESERVE_TIMERS 0
542 #endif
543
544 static void hpet_msi_capability_lookup(unsigned int start_timer)
545 {
546         unsigned int id;
547         unsigned int num_timers;
548         unsigned int num_timers_used = 0;
549         int i, irq;
550
551         if (hpet_msi_disable)
552                 return;
553
554         if (boot_cpu_has(X86_FEATURE_ARAT))
555                 return;
556         id = hpet_readl(HPET_ID);
557
558         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
559         num_timers++; /* Value read out starts from 0 */
560         hpet_print_config();
561
562         hpet_domain = hpet_create_irq_domain(hpet_blockid);
563         if (!hpet_domain)
564                 return;
565
566         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
567         if (!hpet_devs)
568                 return;
569
570         hpet_num_timers = num_timers;
571
572         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
573                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
574                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
575
576                 /* Only consider HPET timer with MSI support */
577                 if (!(cfg & HPET_TN_FSB_CAP))
578                         continue;
579
580                 hdev->flags = 0;
581                 if (cfg & HPET_TN_PERIODIC_CAP)
582                         hdev->flags |= HPET_DEV_PERI_CAP;
583                 sprintf(hdev->name, "hpet%d", i);
584                 hdev->num = i;
585
586                 irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
587                 if (irq <= 0)
588                         continue;
589
590                 hdev->irq = irq;
591                 hdev->flags |= HPET_DEV_FSB_CAP;
592                 hdev->flags |= HPET_DEV_VALID;
593                 num_timers_used++;
594                 if (num_timers_used == num_possible_cpus())
595                         break;
596         }
597
598         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
599                 num_timers, num_timers_used);
600 }
601
602 #ifdef CONFIG_HPET
603 static void hpet_reserve_msi_timers(struct hpet_data *hd)
604 {
605         int i;
606
607         if (!hpet_devs)
608                 return;
609
610         for (i = 0; i < hpet_num_timers; i++) {
611                 struct hpet_dev *hdev = &hpet_devs[i];
612
613                 if (!(hdev->flags & HPET_DEV_VALID))
614                         continue;
615
616                 hd->hd_irq[hdev->num] = hdev->irq;
617                 hpet_reserve_timer(hd, hdev->num);
618         }
619 }
620 #endif
621
622 static struct hpet_dev *hpet_get_unused_timer(void)
623 {
624         int i;
625
626         if (!hpet_devs)
627                 return NULL;
628
629         for (i = 0; i < hpet_num_timers; i++) {
630                 struct hpet_dev *hdev = &hpet_devs[i];
631
632                 if (!(hdev->flags & HPET_DEV_VALID))
633                         continue;
634                 if (test_and_set_bit(HPET_DEV_USED_BIT,
635                         (unsigned long *)&hdev->flags))
636                         continue;
637                 return hdev;
638         }
639         return NULL;
640 }
641
642 struct hpet_work_struct {
643         struct delayed_work work;
644         struct completion complete;
645 };
646
647 static void hpet_work(struct work_struct *w)
648 {
649         struct hpet_dev *hdev;
650         int cpu = smp_processor_id();
651         struct hpet_work_struct *hpet_work;
652
653         hpet_work = container_of(w, struct hpet_work_struct, work.work);
654
655         hdev = hpet_get_unused_timer();
656         if (hdev)
657                 init_one_hpet_msi_clockevent(hdev, cpu);
658
659         complete(&hpet_work->complete);
660 }
661
662 static int hpet_cpuhp_notify(struct notifier_block *n,
663                 unsigned long action, void *hcpu)
664 {
665         unsigned long cpu = (unsigned long)hcpu;
666         struct hpet_work_struct work;
667         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
668
669         switch (action & 0xf) {
670         case CPU_ONLINE:
671                 INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
672                 init_completion(&work.complete);
673                 /* FIXME: add schedule_work_on() */
674                 schedule_delayed_work_on(cpu, &work.work, 0);
675                 wait_for_completion(&work.complete);
676                 destroy_delayed_work_on_stack(&work.work);
677                 break;
678         case CPU_DEAD:
679                 if (hdev) {
680                         free_irq(hdev->irq, hdev);
681                         hdev->flags &= ~HPET_DEV_USED;
682                         per_cpu(cpu_hpet_dev, cpu) = NULL;
683                 }
684                 break;
685         }
686         return NOTIFY_OK;
687 }
688 #else
689
690 static void hpet_msi_capability_lookup(unsigned int start_timer)
691 {
692         return;
693 }
694
695 #ifdef CONFIG_HPET
696 static void hpet_reserve_msi_timers(struct hpet_data *hd)
697 {
698         return;
699 }
700 #endif
701
702 static int hpet_cpuhp_notify(struct notifier_block *n,
703                 unsigned long action, void *hcpu)
704 {
705         return NOTIFY_OK;
706 }
707
708 #endif
709
710 /*
711  * Clock source related code
712  */
713 static cycle_t read_hpet(struct clocksource *cs)
714 {
715         return (cycle_t)hpet_readl(HPET_COUNTER);
716 }
717
718 static struct clocksource clocksource_hpet = {
719         .name           = "hpet",
720         .rating         = 250,
721         .read           = read_hpet,
722         .mask           = HPET_MASK,
723         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
724         .resume         = hpet_resume_counter,
725         .archdata       = { .vclock_mode = VCLOCK_HPET },
726 };
727
728 static int hpet_clocksource_register(void)
729 {
730         u64 start, now;
731         cycle_t t1;
732
733         /* Start the counter */
734         hpet_restart_counter();
735
736         /* Verify whether hpet counter works */
737         t1 = hpet_readl(HPET_COUNTER);
738         rdtscll(start);
739
740         /*
741          * We don't know the TSC frequency yet, but waiting for
742          * 200000 TSC cycles is safe:
743          * 4 GHz == 50us
744          * 1 GHz == 200us
745          */
746         do {
747                 rep_nop();
748                 rdtscll(now);
749         } while ((now - start) < 200000UL);
750
751         if (t1 == hpet_readl(HPET_COUNTER)) {
752                 printk(KERN_WARNING
753                        "HPET counter not counting. HPET disabled\n");
754                 return -ENODEV;
755         }
756
757         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
758         return 0;
759 }
760
761 static u32 *hpet_boot_cfg;
762
763 /**
764  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
765  */
766 int __init hpet_enable(void)
767 {
768         u32 hpet_period, cfg, id;
769         u64 freq;
770         unsigned int i, last;
771
772         if (!is_hpet_capable())
773                 return 0;
774
775         hpet_set_mapping();
776
777         /*
778          * Read the period and check for a sane value:
779          */
780         hpet_period = hpet_readl(HPET_PERIOD);
781
782         /*
783          * AMD SB700 based systems with spread spectrum enabled use a
784          * SMM based HPET emulation to provide proper frequency
785          * setting. The SMM code is initialized with the first HPET
786          * register access and takes some time to complete. During
787          * this time the config register reads 0xffffffff. We check
788          * for max. 1000 loops whether the config register reads a non
789          * 0xffffffff value to make sure that HPET is up and running
790          * before we go further. A counting loop is safe, as the HPET
791          * access takes thousands of CPU cycles. On non SB700 based
792          * machines this check is only done once and has no side
793          * effects.
794          */
795         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
796                 if (i == 1000) {
797                         printk(KERN_WARNING
798                                "HPET config register value = 0xFFFFFFFF. "
799                                "Disabling HPET\n");
800                         goto out_nohpet;
801                 }
802         }
803
804         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
805                 goto out_nohpet;
806
807         /*
808          * The period is a femto seconds value. Convert it to a
809          * frequency.
810          */
811         freq = FSEC_PER_SEC;
812         do_div(freq, hpet_period);
813         hpet_freq = freq;
814
815         /*
816          * Read the HPET ID register to retrieve the IRQ routing
817          * information and the number of channels
818          */
819         id = hpet_readl(HPET_ID);
820         hpet_print_config();
821
822         last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
823
824 #ifdef CONFIG_HPET_EMULATE_RTC
825         /*
826          * The legacy routing mode needs at least two channels, tick timer
827          * and the rtc emulation channel.
828          */
829         if (!last)
830                 goto out_nohpet;
831 #endif
832
833         cfg = hpet_readl(HPET_CFG);
834         hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
835                                 GFP_KERNEL);
836         if (hpet_boot_cfg)
837                 *hpet_boot_cfg = cfg;
838         else
839                 pr_warn("HPET initial state will not be saved\n");
840         cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
841         hpet_writel(cfg, HPET_CFG);
842         if (cfg)
843                 pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
844                         cfg);
845
846         for (i = 0; i <= last; ++i) {
847                 cfg = hpet_readl(HPET_Tn_CFG(i));
848                 if (hpet_boot_cfg)
849                         hpet_boot_cfg[i + 1] = cfg;
850                 cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
851                 hpet_writel(cfg, HPET_Tn_CFG(i));
852                 cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
853                          | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
854                          | HPET_TN_FSB | HPET_TN_FSB_CAP);
855                 if (cfg)
856                         pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
857                                 cfg, i);
858         }
859         hpet_print_config();
860
861         if (hpet_clocksource_register())
862                 goto out_nohpet;
863
864         if (id & HPET_ID_LEGSUP) {
865                 hpet_legacy_clockevent_register();
866                 return 1;
867         }
868         return 0;
869
870 out_nohpet:
871         hpet_clear_mapping();
872         hpet_address = 0;
873         return 0;
874 }
875
876 /*
877  * Needs to be late, as the reserve_timer code calls kalloc !
878  *
879  * Not a problem on i386 as hpet_enable is called from late_time_init,
880  * but on x86_64 it is necessary !
881  */
882 static __init int hpet_late_init(void)
883 {
884         int cpu;
885
886         if (boot_hpet_disable)
887                 return -ENODEV;
888
889         if (!hpet_address) {
890                 if (!force_hpet_address)
891                         return -ENODEV;
892
893                 hpet_address = force_hpet_address;
894                 hpet_enable();
895         }
896
897         if (!hpet_virt_address)
898                 return -ENODEV;
899
900         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
901                 hpet_msi_capability_lookup(2);
902         else
903                 hpet_msi_capability_lookup(0);
904
905         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
906         hpet_print_config();
907
908         if (hpet_msi_disable)
909                 return 0;
910
911         if (boot_cpu_has(X86_FEATURE_ARAT))
912                 return 0;
913
914         cpu_notifier_register_begin();
915         for_each_online_cpu(cpu) {
916                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
917         }
918
919         /* This notifier should be called after workqueue is ready */
920         __hotcpu_notifier(hpet_cpuhp_notify, -20);
921         cpu_notifier_register_done();
922
923         return 0;
924 }
925 fs_initcall(hpet_late_init);
926
927 void hpet_disable(void)
928 {
929         if (is_hpet_capable() && hpet_virt_address) {
930                 unsigned int cfg = hpet_readl(HPET_CFG), id, last;
931
932                 if (hpet_boot_cfg)
933                         cfg = *hpet_boot_cfg;
934                 else if (hpet_legacy_int_enabled) {
935                         cfg &= ~HPET_CFG_LEGACY;
936                         hpet_legacy_int_enabled = 0;
937                 }
938                 cfg &= ~HPET_CFG_ENABLE;
939                 hpet_writel(cfg, HPET_CFG);
940
941                 if (!hpet_boot_cfg)
942                         return;
943
944                 id = hpet_readl(HPET_ID);
945                 last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
946
947                 for (id = 0; id <= last; ++id)
948                         hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
949
950                 if (*hpet_boot_cfg & HPET_CFG_ENABLE)
951                         hpet_writel(*hpet_boot_cfg, HPET_CFG);
952         }
953 }
954
955 #ifdef CONFIG_HPET_EMULATE_RTC
956
957 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
958  * is enabled, we support RTC interrupt functionality in software.
959  * RTC has 3 kinds of interrupts:
960  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
961  *    is updated
962  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
963  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
964  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
965  * (1) and (2) above are implemented using polling at a frequency of
966  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
967  * overhead. (DEFAULT_RTC_INT_FREQ)
968  * For (3), we use interrupts at 64Hz or user specified periodic
969  * frequency, whichever is higher.
970  */
971 #include <linux/mc146818rtc.h>
972 #include <linux/rtc.h>
973 #include <asm/rtc.h>
974
975 #define DEFAULT_RTC_INT_FREQ    64
976 #define DEFAULT_RTC_SHIFT       6
977 #define RTC_NUM_INTS            1
978
979 static unsigned long hpet_rtc_flags;
980 static int hpet_prev_update_sec;
981 static struct rtc_time hpet_alarm_time;
982 static unsigned long hpet_pie_count;
983 static u32 hpet_t1_cmp;
984 static u32 hpet_default_delta;
985 static u32 hpet_pie_delta;
986 static unsigned long hpet_pie_limit;
987
988 static rtc_irq_handler irq_handler;
989
990 /*
991  * Check that the hpet counter c1 is ahead of the c2
992  */
993 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
994 {
995         return (s32)(c2 - c1) < 0;
996 }
997
998 /*
999  * Registers a IRQ handler.
1000  */
1001 int hpet_register_irq_handler(rtc_irq_handler handler)
1002 {
1003         if (!is_hpet_enabled())
1004                 return -ENODEV;
1005         if (irq_handler)
1006                 return -EBUSY;
1007
1008         irq_handler = handler;
1009
1010         return 0;
1011 }
1012 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1013
1014 /*
1015  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1016  * and does cleanup.
1017  */
1018 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1019 {
1020         if (!is_hpet_enabled())
1021                 return;
1022
1023         irq_handler = NULL;
1024         hpet_rtc_flags = 0;
1025 }
1026 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1027
1028 /*
1029  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1030  * is not supported by all HPET implementations for timer 1.
1031  *
1032  * hpet_rtc_timer_init() is called when the rtc is initialized.
1033  */
1034 int hpet_rtc_timer_init(void)
1035 {
1036         unsigned int cfg, cnt, delta;
1037         unsigned long flags;
1038
1039         if (!is_hpet_enabled())
1040                 return 0;
1041
1042         if (!hpet_default_delta) {
1043                 uint64_t clc;
1044
1045                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1046                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1047                 hpet_default_delta = clc;
1048         }
1049
1050         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1051                 delta = hpet_default_delta;
1052         else
1053                 delta = hpet_pie_delta;
1054
1055         local_irq_save(flags);
1056
1057         cnt = delta + hpet_readl(HPET_COUNTER);
1058         hpet_writel(cnt, HPET_T1_CMP);
1059         hpet_t1_cmp = cnt;
1060
1061         cfg = hpet_readl(HPET_T1_CFG);
1062         cfg &= ~HPET_TN_PERIODIC;
1063         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1064         hpet_writel(cfg, HPET_T1_CFG);
1065
1066         local_irq_restore(flags);
1067
1068         return 1;
1069 }
1070 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1071
1072 static void hpet_disable_rtc_channel(void)
1073 {
1074         unsigned long cfg;
1075         cfg = hpet_readl(HPET_T1_CFG);
1076         cfg &= ~HPET_TN_ENABLE;
1077         hpet_writel(cfg, HPET_T1_CFG);
1078 }
1079
1080 /*
1081  * The functions below are called from rtc driver.
1082  * Return 0 if HPET is not being used.
1083  * Otherwise do the necessary changes and return 1.
1084  */
1085 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1086 {
1087         if (!is_hpet_enabled())
1088                 return 0;
1089
1090         hpet_rtc_flags &= ~bit_mask;
1091         if (unlikely(!hpet_rtc_flags))
1092                 hpet_disable_rtc_channel();
1093
1094         return 1;
1095 }
1096 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1097
1098 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1099 {
1100         unsigned long oldbits = hpet_rtc_flags;
1101
1102         if (!is_hpet_enabled())
1103                 return 0;
1104
1105         hpet_rtc_flags |= bit_mask;
1106
1107         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1108                 hpet_prev_update_sec = -1;
1109
1110         if (!oldbits)
1111                 hpet_rtc_timer_init();
1112
1113         return 1;
1114 }
1115 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1116
1117 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1118                         unsigned char sec)
1119 {
1120         if (!is_hpet_enabled())
1121                 return 0;
1122
1123         hpet_alarm_time.tm_hour = hrs;
1124         hpet_alarm_time.tm_min = min;
1125         hpet_alarm_time.tm_sec = sec;
1126
1127         return 1;
1128 }
1129 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1130
1131 int hpet_set_periodic_freq(unsigned long freq)
1132 {
1133         uint64_t clc;
1134
1135         if (!is_hpet_enabled())
1136                 return 0;
1137
1138         if (freq <= DEFAULT_RTC_INT_FREQ)
1139                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1140         else {
1141                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1142                 do_div(clc, freq);
1143                 clc >>= hpet_clockevent.shift;
1144                 hpet_pie_delta = clc;
1145                 hpet_pie_limit = 0;
1146         }
1147         return 1;
1148 }
1149 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1150
1151 int hpet_rtc_dropped_irq(void)
1152 {
1153         return is_hpet_enabled();
1154 }
1155 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1156
1157 static void hpet_rtc_timer_reinit(void)
1158 {
1159         unsigned int delta;
1160         int lost_ints = -1;
1161
1162         if (unlikely(!hpet_rtc_flags))
1163                 hpet_disable_rtc_channel();
1164
1165         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1166                 delta = hpet_default_delta;
1167         else
1168                 delta = hpet_pie_delta;
1169
1170         /*
1171          * Increment the comparator value until we are ahead of the
1172          * current count.
1173          */
1174         do {
1175                 hpet_t1_cmp += delta;
1176                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1177                 lost_ints++;
1178         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1179
1180         if (lost_ints) {
1181                 if (hpet_rtc_flags & RTC_PIE)
1182                         hpet_pie_count += lost_ints;
1183                 if (printk_ratelimit())
1184                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1185                                 lost_ints);
1186         }
1187 }
1188
1189 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1190 {
1191         struct rtc_time curr_time;
1192         unsigned long rtc_int_flag = 0;
1193
1194         hpet_rtc_timer_reinit();
1195         memset(&curr_time, 0, sizeof(struct rtc_time));
1196
1197         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1198                 get_rtc_time(&curr_time);
1199
1200         if (hpet_rtc_flags & RTC_UIE &&
1201             curr_time.tm_sec != hpet_prev_update_sec) {
1202                 if (hpet_prev_update_sec >= 0)
1203                         rtc_int_flag = RTC_UF;
1204                 hpet_prev_update_sec = curr_time.tm_sec;
1205         }
1206
1207         if (hpet_rtc_flags & RTC_PIE &&
1208             ++hpet_pie_count >= hpet_pie_limit) {
1209                 rtc_int_flag |= RTC_PF;
1210                 hpet_pie_count = 0;
1211         }
1212
1213         if (hpet_rtc_flags & RTC_AIE &&
1214             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1215             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1216             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1217                         rtc_int_flag |= RTC_AF;
1218
1219         if (rtc_int_flag) {
1220                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1221                 if (irq_handler)
1222                         irq_handler(rtc_int_flag, dev_id);
1223         }
1224         return IRQ_HANDLED;
1225 }
1226 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1227 #endif