alpha: switch to saner kernel_execve() semantics
[firefly-linux-kernel-4.4.55.git] / arch / um / kernel / process.c
1 /*
2  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
3  * Copyright 2003 PathScale, Inc.
4  * Licensed under the GPL
5  */
6
7 #include <linux/stddef.h>
8 #include <linux/err.h>
9 #include <linux/hardirq.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/personality.h>
13 #include <linux/proc_fs.h>
14 #include <linux/ptrace.h>
15 #include <linux/random.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/seq_file.h>
19 #include <linux/tick.h>
20 #include <linux/threads.h>
21 #include <linux/tracehook.h>
22 #include <asm/current.h>
23 #include <asm/pgtable.h>
24 #include <asm/mmu_context.h>
25 #include <asm/uaccess.h>
26 #include "as-layout.h"
27 #include "kern_util.h"
28 #include "os.h"
29 #include "skas.h"
30
31 /*
32  * This is a per-cpu array.  A processor only modifies its entry and it only
33  * cares about its entry, so it's OK if another processor is modifying its
34  * entry.
35  */
36 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
37
38 static inline int external_pid(void)
39 {
40         /* FIXME: Need to look up userspace_pid by cpu */
41         return userspace_pid[0];
42 }
43
44 int pid_to_processor_id(int pid)
45 {
46         int i;
47
48         for (i = 0; i < ncpus; i++) {
49                 if (cpu_tasks[i].pid == pid)
50                         return i;
51         }
52         return -1;
53 }
54
55 void free_stack(unsigned long stack, int order)
56 {
57         free_pages(stack, order);
58 }
59
60 unsigned long alloc_stack(int order, int atomic)
61 {
62         unsigned long page;
63         gfp_t flags = GFP_KERNEL;
64
65         if (atomic)
66                 flags = GFP_ATOMIC;
67         page = __get_free_pages(flags, order);
68
69         return page;
70 }
71
72 static inline void set_current(struct task_struct *task)
73 {
74         cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
75                 { external_pid(), task });
76 }
77
78 extern void arch_switch_to(struct task_struct *to);
79
80 void *__switch_to(struct task_struct *from, struct task_struct *to)
81 {
82         to->thread.prev_sched = from;
83         set_current(to);
84
85         do {
86                 current->thread.saved_task = NULL;
87
88                 switch_threads(&from->thread.switch_buf,
89                                &to->thread.switch_buf);
90
91                 arch_switch_to(current);
92
93                 if (current->thread.saved_task)
94                         show_regs(&(current->thread.regs));
95                 to = current->thread.saved_task;
96                 from = current;
97         } while (current->thread.saved_task);
98
99         return current->thread.prev_sched;
100 }
101
102 void interrupt_end(void)
103 {
104         if (need_resched())
105                 schedule();
106         if (test_thread_flag(TIF_SIGPENDING))
107                 do_signal();
108         if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
109                 tracehook_notify_resume(&current->thread.regs);
110 }
111
112 void exit_thread(void)
113 {
114 }
115
116 int get_current_pid(void)
117 {
118         return task_pid_nr(current);
119 }
120
121 /*
122  * This is called magically, by its address being stuffed in a jmp_buf
123  * and being longjmp-d to.
124  */
125 void new_thread_handler(void)
126 {
127         int (*fn)(void *), n;
128         void *arg;
129
130         if (current->thread.prev_sched != NULL)
131                 schedule_tail(current->thread.prev_sched);
132         current->thread.prev_sched = NULL;
133
134         fn = current->thread.request.u.thread.proc;
135         arg = current->thread.request.u.thread.arg;
136
137         /*
138          * callback returns only if the kernel thread execs a process
139          */
140         n = fn(arg);
141         userspace(&current->thread.regs.regs);
142 }
143
144 /* Called magically, see new_thread_handler above */
145 void fork_handler(void)
146 {
147         force_flush_all();
148
149         schedule_tail(current->thread.prev_sched);
150
151         /*
152          * XXX: if interrupt_end() calls schedule, this call to
153          * arch_switch_to isn't needed. We could want to apply this to
154          * improve performance. -bb
155          */
156         arch_switch_to(current);
157
158         current->thread.prev_sched = NULL;
159
160         userspace(&current->thread.regs.regs);
161 }
162
163 int copy_thread(unsigned long clone_flags, unsigned long sp,
164                 unsigned long arg, struct task_struct * p,
165                 struct pt_regs *regs)
166 {
167         void (*handler)(void);
168         int kthread = current->flags & PF_KTHREAD;
169         int ret = 0;
170
171         p->thread = (struct thread_struct) INIT_THREAD;
172
173         if (!kthread) {
174                 memcpy(&p->thread.regs.regs, &regs->regs,
175                        sizeof(p->thread.regs.regs));
176                 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
177                 if (sp != 0)
178                         REGS_SP(p->thread.regs.regs.gp) = sp;
179
180                 handler = fork_handler;
181
182                 arch_copy_thread(&current->thread.arch, &p->thread.arch);
183         } else {
184                 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
185                 p->thread.request.u.thread.proc = (int (*)(void *))sp;
186                 p->thread.request.u.thread.arg = (void *)arg;
187                 handler = new_thread_handler;
188         }
189
190         new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
191
192         if (!kthread) {
193                 clear_flushed_tls(p);
194
195                 /*
196                  * Set a new TLS for the child thread?
197                  */
198                 if (clone_flags & CLONE_SETTLS)
199                         ret = arch_copy_tls(p);
200         }
201
202         return ret;
203 }
204
205 void initial_thread_cb(void (*proc)(void *), void *arg)
206 {
207         int save_kmalloc_ok = kmalloc_ok;
208
209         kmalloc_ok = 0;
210         initial_thread_cb_skas(proc, arg);
211         kmalloc_ok = save_kmalloc_ok;
212 }
213
214 void default_idle(void)
215 {
216         unsigned long long nsecs;
217
218         while (1) {
219                 /* endless idle loop with no priority at all */
220
221                 /*
222                  * although we are an idle CPU, we do not want to
223                  * get into the scheduler unnecessarily.
224                  */
225                 if (need_resched())
226                         schedule();
227
228                 tick_nohz_idle_enter();
229                 rcu_idle_enter();
230                 nsecs = disable_timer();
231                 idle_sleep(nsecs);
232                 rcu_idle_exit();
233                 tick_nohz_idle_exit();
234         }
235 }
236
237 void cpu_idle(void)
238 {
239         cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
240         default_idle();
241 }
242
243 int __cant_sleep(void) {
244         return in_atomic() || irqs_disabled() || in_interrupt();
245         /* Is in_interrupt() really needed? */
246 }
247
248 int user_context(unsigned long sp)
249 {
250         unsigned long stack;
251
252         stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
253         return stack != (unsigned long) current_thread_info();
254 }
255
256 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
257
258 void do_uml_exitcalls(void)
259 {
260         exitcall_t *call;
261
262         call = &__uml_exitcall_end;
263         while (--call >= &__uml_exitcall_begin)
264                 (*call)();
265 }
266
267 char *uml_strdup(const char *string)
268 {
269         return kstrdup(string, GFP_KERNEL);
270 }
271 EXPORT_SYMBOL(uml_strdup);
272
273 int copy_to_user_proc(void __user *to, void *from, int size)
274 {
275         return copy_to_user(to, from, size);
276 }
277
278 int copy_from_user_proc(void *to, void __user *from, int size)
279 {
280         return copy_from_user(to, from, size);
281 }
282
283 int clear_user_proc(void __user *buf, int size)
284 {
285         return clear_user(buf, size);
286 }
287
288 int strlen_user_proc(char __user *str)
289 {
290         return strlen_user(str);
291 }
292
293 int smp_sigio_handler(void)
294 {
295 #ifdef CONFIG_SMP
296         int cpu = current_thread_info()->cpu;
297         IPI_handler(cpu);
298         if (cpu != 0)
299                 return 1;
300 #endif
301         return 0;
302 }
303
304 int cpu(void)
305 {
306         return current_thread_info()->cpu;
307 }
308
309 static atomic_t using_sysemu = ATOMIC_INIT(0);
310 int sysemu_supported;
311
312 void set_using_sysemu(int value)
313 {
314         if (value > sysemu_supported)
315                 return;
316         atomic_set(&using_sysemu, value);
317 }
318
319 int get_using_sysemu(void)
320 {
321         return atomic_read(&using_sysemu);
322 }
323
324 static int sysemu_proc_show(struct seq_file *m, void *v)
325 {
326         seq_printf(m, "%d\n", get_using_sysemu());
327         return 0;
328 }
329
330 static int sysemu_proc_open(struct inode *inode, struct file *file)
331 {
332         return single_open(file, sysemu_proc_show, NULL);
333 }
334
335 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
336                                  size_t count, loff_t *pos)
337 {
338         char tmp[2];
339
340         if (copy_from_user(tmp, buf, 1))
341                 return -EFAULT;
342
343         if (tmp[0] >= '0' && tmp[0] <= '2')
344                 set_using_sysemu(tmp[0] - '0');
345         /* We use the first char, but pretend to write everything */
346         return count;
347 }
348
349 static const struct file_operations sysemu_proc_fops = {
350         .owner          = THIS_MODULE,
351         .open           = sysemu_proc_open,
352         .read           = seq_read,
353         .llseek         = seq_lseek,
354         .release        = single_release,
355         .write          = sysemu_proc_write,
356 };
357
358 int __init make_proc_sysemu(void)
359 {
360         struct proc_dir_entry *ent;
361         if (!sysemu_supported)
362                 return 0;
363
364         ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
365
366         if (ent == NULL)
367         {
368                 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
369                 return 0;
370         }
371
372         return 0;
373 }
374
375 late_initcall(make_proc_sysemu);
376
377 int singlestepping(void * t)
378 {
379         struct task_struct *task = t ? t : current;
380
381         if (!(task->ptrace & PT_DTRACE))
382                 return 0;
383
384         if (task->thread.singlestep_syscall)
385                 return 1;
386
387         return 2;
388 }
389
390 /*
391  * Only x86 and x86_64 have an arch_align_stack().
392  * All other arches have "#define arch_align_stack(x) (x)"
393  * in their asm/system.h
394  * As this is included in UML from asm-um/system-generic.h,
395  * we can use it to behave as the subarch does.
396  */
397 #ifndef arch_align_stack
398 unsigned long arch_align_stack(unsigned long sp)
399 {
400         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
401                 sp -= get_random_int() % 8192;
402         return sp & ~0xf;
403 }
404 #endif
405
406 unsigned long get_wchan(struct task_struct *p)
407 {
408         unsigned long stack_page, sp, ip;
409         bool seen_sched = 0;
410
411         if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
412                 return 0;
413
414         stack_page = (unsigned long) task_stack_page(p);
415         /* Bail if the process has no kernel stack for some reason */
416         if (stack_page == 0)
417                 return 0;
418
419         sp = p->thread.switch_buf->JB_SP;
420         /*
421          * Bail if the stack pointer is below the bottom of the kernel
422          * stack for some reason
423          */
424         if (sp < stack_page)
425                 return 0;
426
427         while (sp < stack_page + THREAD_SIZE) {
428                 ip = *((unsigned long *) sp);
429                 if (in_sched_functions(ip))
430                         /* Ignore everything until we're above the scheduler */
431                         seen_sched = 1;
432                 else if (kernel_text_address(ip) && seen_sched)
433                         return ip;
434
435                 sp += sizeof(unsigned long);
436         }
437
438         return 0;
439 }
440
441 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
442 {
443         int cpu = current_thread_info()->cpu;
444
445         return save_fp_registers(userspace_pid[cpu], (unsigned long *) fpu);
446 }
447