Merge branch develop-3.10 into develop-3.10-next
[firefly-linux-kernel-4.4.55.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/percpu.h>
26 #include <linux/memblock.h>
27 #include <linux/mmzone.h>
28 #include <linux/gfp.h>
29
30 #include <asm/head.h>
31 #include <asm/page.h>
32 #include <asm/pgalloc.h>
33 #include <asm/pgtable.h>
34 #include <asm/oplib.h>
35 #include <asm/iommu.h>
36 #include <asm/io.h>
37 #include <asm/uaccess.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/dma.h>
41 #include <asm/starfire.h>
42 #include <asm/tlb.h>
43 #include <asm/spitfire.h>
44 #include <asm/sections.h>
45 #include <asm/tsb.h>
46 #include <asm/hypervisor.h>
47 #include <asm/prom.h>
48 #include <asm/mdesc.h>
49 #include <asm/cpudata.h>
50 #include <asm/irq.h>
51
52 #include "init_64.h"
53
54 unsigned long kern_linear_pte_xor[4] __read_mostly;
55
56 /* A bitmap, two bits for every 256MB of physical memory.  These two
57  * bits determine what page size we use for kernel linear
58  * translations.  They form an index into kern_linear_pte_xor[].  The
59  * value in the indexed slot is XOR'd with the TLB miss virtual
60  * address to form the resulting TTE.  The mapping is:
61  *
62  *      0       ==>     4MB
63  *      1       ==>     256MB
64  *      2       ==>     2GB
65  *      3       ==>     16GB
66  *
67  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
68  * support 2GB pages, and hopefully future cpus will support the 16GB
69  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
70  * if these larger page sizes are not supported by the cpu.
71  *
72  * It would be nice to determine this from the machine description
73  * 'cpu' properties, but we need to have this table setup before the
74  * MDESC is initialized.
75  */
76 unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
77
78 #ifndef CONFIG_DEBUG_PAGEALLOC
79 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
80  * Space is allocated for this right after the trap table in
81  * arch/sparc64/kernel/head.S
82  */
83 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
84 #endif
85
86 static unsigned long cpu_pgsz_mask;
87
88 #define MAX_BANKS       32
89
90 static struct linux_prom64_registers pavail[MAX_BANKS];
91 static int pavail_ents;
92
93 static int cmp_p64(const void *a, const void *b)
94 {
95         const struct linux_prom64_registers *x = a, *y = b;
96
97         if (x->phys_addr > y->phys_addr)
98                 return 1;
99         if (x->phys_addr < y->phys_addr)
100                 return -1;
101         return 0;
102 }
103
104 static void __init read_obp_memory(const char *property,
105                                    struct linux_prom64_registers *regs,
106                                    int *num_ents)
107 {
108         phandle node = prom_finddevice("/memory");
109         int prop_size = prom_getproplen(node, property);
110         int ents, ret, i;
111
112         ents = prop_size / sizeof(struct linux_prom64_registers);
113         if (ents > MAX_BANKS) {
114                 prom_printf("The machine has more %s property entries than "
115                             "this kernel can support (%d).\n",
116                             property, MAX_BANKS);
117                 prom_halt();
118         }
119
120         ret = prom_getproperty(node, property, (char *) regs, prop_size);
121         if (ret == -1) {
122                 prom_printf("Couldn't get %s property from /memory.\n",
123                                 property);
124                 prom_halt();
125         }
126
127         /* Sanitize what we got from the firmware, by page aligning
128          * everything.
129          */
130         for (i = 0; i < ents; i++) {
131                 unsigned long base, size;
132
133                 base = regs[i].phys_addr;
134                 size = regs[i].reg_size;
135
136                 size &= PAGE_MASK;
137                 if (base & ~PAGE_MASK) {
138                         unsigned long new_base = PAGE_ALIGN(base);
139
140                         size -= new_base - base;
141                         if ((long) size < 0L)
142                                 size = 0UL;
143                         base = new_base;
144                 }
145                 if (size == 0UL) {
146                         /* If it is empty, simply get rid of it.
147                          * This simplifies the logic of the other
148                          * functions that process these arrays.
149                          */
150                         memmove(&regs[i], &regs[i + 1],
151                                 (ents - i - 1) * sizeof(regs[0]));
152                         i--;
153                         ents--;
154                         continue;
155                 }
156                 regs[i].phys_addr = base;
157                 regs[i].reg_size = size;
158         }
159
160         *num_ents = ents;
161
162         sort(regs, ents, sizeof(struct linux_prom64_registers),
163              cmp_p64, NULL);
164 }
165
166 unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
167                                         sizeof(unsigned long)];
168 EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
169
170 /* Kernel physical address base and size in bytes.  */
171 unsigned long kern_base __read_mostly;
172 unsigned long kern_size __read_mostly;
173
174 /* Initial ramdisk setup */
175 extern unsigned long sparc_ramdisk_image64;
176 extern unsigned int sparc_ramdisk_image;
177 extern unsigned int sparc_ramdisk_size;
178
179 struct page *mem_map_zero __read_mostly;
180 EXPORT_SYMBOL(mem_map_zero);
181
182 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
183
184 unsigned long sparc64_kern_pri_context __read_mostly;
185 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
186 unsigned long sparc64_kern_sec_context __read_mostly;
187
188 int num_kernel_image_mappings;
189
190 #ifdef CONFIG_DEBUG_DCFLUSH
191 atomic_t dcpage_flushes = ATOMIC_INIT(0);
192 #ifdef CONFIG_SMP
193 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
194 #endif
195 #endif
196
197 inline void flush_dcache_page_impl(struct page *page)
198 {
199         BUG_ON(tlb_type == hypervisor);
200 #ifdef CONFIG_DEBUG_DCFLUSH
201         atomic_inc(&dcpage_flushes);
202 #endif
203
204 #ifdef DCACHE_ALIASING_POSSIBLE
205         __flush_dcache_page(page_address(page),
206                             ((tlb_type == spitfire) &&
207                              page_mapping(page) != NULL));
208 #else
209         if (page_mapping(page) != NULL &&
210             tlb_type == spitfire)
211                 __flush_icache_page(__pa(page_address(page)));
212 #endif
213 }
214
215 #define PG_dcache_dirty         PG_arch_1
216 #define PG_dcache_cpu_shift     32UL
217 #define PG_dcache_cpu_mask      \
218         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
219
220 #define dcache_dirty_cpu(page) \
221         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
222
223 static inline void set_dcache_dirty(struct page *page, int this_cpu)
224 {
225         unsigned long mask = this_cpu;
226         unsigned long non_cpu_bits;
227
228         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
229         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
230
231         __asm__ __volatile__("1:\n\t"
232                              "ldx       [%2], %%g7\n\t"
233                              "and       %%g7, %1, %%g1\n\t"
234                              "or        %%g1, %0, %%g1\n\t"
235                              "casx      [%2], %%g7, %%g1\n\t"
236                              "cmp       %%g7, %%g1\n\t"
237                              "bne,pn    %%xcc, 1b\n\t"
238                              " nop"
239                              : /* no outputs */
240                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
241                              : "g1", "g7");
242 }
243
244 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
245 {
246         unsigned long mask = (1UL << PG_dcache_dirty);
247
248         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
249                              "1:\n\t"
250                              "ldx       [%2], %%g7\n\t"
251                              "srlx      %%g7, %4, %%g1\n\t"
252                              "and       %%g1, %3, %%g1\n\t"
253                              "cmp       %%g1, %0\n\t"
254                              "bne,pn    %%icc, 2f\n\t"
255                              " andn     %%g7, %1, %%g1\n\t"
256                              "casx      [%2], %%g7, %%g1\n\t"
257                              "cmp       %%g7, %%g1\n\t"
258                              "bne,pn    %%xcc, 1b\n\t"
259                              " nop\n"
260                              "2:"
261                              : /* no outputs */
262                              : "r" (cpu), "r" (mask), "r" (&page->flags),
263                                "i" (PG_dcache_cpu_mask),
264                                "i" (PG_dcache_cpu_shift)
265                              : "g1", "g7");
266 }
267
268 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
269 {
270         unsigned long tsb_addr = (unsigned long) ent;
271
272         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
273                 tsb_addr = __pa(tsb_addr);
274
275         __tsb_insert(tsb_addr, tag, pte);
276 }
277
278 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
279
280 static void flush_dcache(unsigned long pfn)
281 {
282         struct page *page;
283
284         page = pfn_to_page(pfn);
285         if (page) {
286                 unsigned long pg_flags;
287
288                 pg_flags = page->flags;
289                 if (pg_flags & (1UL << PG_dcache_dirty)) {
290                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
291                                    PG_dcache_cpu_mask);
292                         int this_cpu = get_cpu();
293
294                         /* This is just to optimize away some function calls
295                          * in the SMP case.
296                          */
297                         if (cpu == this_cpu)
298                                 flush_dcache_page_impl(page);
299                         else
300                                 smp_flush_dcache_page_impl(page, cpu);
301
302                         clear_dcache_dirty_cpu(page, cpu);
303
304                         put_cpu();
305                 }
306         }
307 }
308
309 /* mm->context.lock must be held */
310 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
311                                     unsigned long tsb_hash_shift, unsigned long address,
312                                     unsigned long tte)
313 {
314         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
315         unsigned long tag;
316
317         if (unlikely(!tsb))
318                 return;
319
320         tsb += ((address >> tsb_hash_shift) &
321                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
322         tag = (address >> 22UL);
323         tsb_insert(tsb, tag, tte);
324 }
325
326 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
327 static inline bool is_hugetlb_pte(pte_t pte)
328 {
329         if ((tlb_type == hypervisor &&
330              (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
331             (tlb_type != hypervisor &&
332              (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
333                 return true;
334         return false;
335 }
336 #endif
337
338 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
339 {
340         struct mm_struct *mm;
341         unsigned long flags;
342         pte_t pte = *ptep;
343
344         if (tlb_type != hypervisor) {
345                 unsigned long pfn = pte_pfn(pte);
346
347                 if (pfn_valid(pfn))
348                         flush_dcache(pfn);
349         }
350
351         mm = vma->vm_mm;
352
353         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
354         if (!pte_accessible(mm, pte))
355                 return;
356
357         spin_lock_irqsave(&mm->context.lock, flags);
358
359 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
360         if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
361                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
362                                         address, pte_val(pte));
363         else
364 #endif
365                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
366                                         address, pte_val(pte));
367
368         spin_unlock_irqrestore(&mm->context.lock, flags);
369 }
370
371 void flush_dcache_page(struct page *page)
372 {
373         struct address_space *mapping;
374         int this_cpu;
375
376         if (tlb_type == hypervisor)
377                 return;
378
379         /* Do not bother with the expensive D-cache flush if it
380          * is merely the zero page.  The 'bigcore' testcase in GDB
381          * causes this case to run millions of times.
382          */
383         if (page == ZERO_PAGE(0))
384                 return;
385
386         this_cpu = get_cpu();
387
388         mapping = page_mapping(page);
389         if (mapping && !mapping_mapped(mapping)) {
390                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
391                 if (dirty) {
392                         int dirty_cpu = dcache_dirty_cpu(page);
393
394                         if (dirty_cpu == this_cpu)
395                                 goto out;
396                         smp_flush_dcache_page_impl(page, dirty_cpu);
397                 }
398                 set_dcache_dirty(page, this_cpu);
399         } else {
400                 /* We could delay the flush for the !page_mapping
401                  * case too.  But that case is for exec env/arg
402                  * pages and those are %99 certainly going to get
403                  * faulted into the tlb (and thus flushed) anyways.
404                  */
405                 flush_dcache_page_impl(page);
406         }
407
408 out:
409         put_cpu();
410 }
411 EXPORT_SYMBOL(flush_dcache_page);
412
413 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
414 {
415         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
416         if (tlb_type == spitfire) {
417                 unsigned long kaddr;
418
419                 /* This code only runs on Spitfire cpus so this is
420                  * why we can assume _PAGE_PADDR_4U.
421                  */
422                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
423                         unsigned long paddr, mask = _PAGE_PADDR_4U;
424
425                         if (kaddr >= PAGE_OFFSET)
426                                 paddr = kaddr & mask;
427                         else {
428                                 pgd_t *pgdp = pgd_offset_k(kaddr);
429                                 pud_t *pudp = pud_offset(pgdp, kaddr);
430                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
431                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
432
433                                 paddr = pte_val(*ptep) & mask;
434                         }
435                         __flush_icache_page(paddr);
436                 }
437         }
438 }
439 EXPORT_SYMBOL(flush_icache_range);
440
441 void mmu_info(struct seq_file *m)
442 {
443         static const char *pgsz_strings[] = {
444                 "8K", "64K", "512K", "4MB", "32MB",
445                 "256MB", "2GB", "16GB",
446         };
447         int i, printed;
448
449         if (tlb_type == cheetah)
450                 seq_printf(m, "MMU Type\t: Cheetah\n");
451         else if (tlb_type == cheetah_plus)
452                 seq_printf(m, "MMU Type\t: Cheetah+\n");
453         else if (tlb_type == spitfire)
454                 seq_printf(m, "MMU Type\t: Spitfire\n");
455         else if (tlb_type == hypervisor)
456                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
457         else
458                 seq_printf(m, "MMU Type\t: ???\n");
459
460         seq_printf(m, "MMU PGSZs\t: ");
461         printed = 0;
462         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
463                 if (cpu_pgsz_mask & (1UL << i)) {
464                         seq_printf(m, "%s%s",
465                                    printed ? "," : "", pgsz_strings[i]);
466                         printed++;
467                 }
468         }
469         seq_putc(m, '\n');
470
471 #ifdef CONFIG_DEBUG_DCFLUSH
472         seq_printf(m, "DCPageFlushes\t: %d\n",
473                    atomic_read(&dcpage_flushes));
474 #ifdef CONFIG_SMP
475         seq_printf(m, "DCPageFlushesXC\t: %d\n",
476                    atomic_read(&dcpage_flushes_xcall));
477 #endif /* CONFIG_SMP */
478 #endif /* CONFIG_DEBUG_DCFLUSH */
479 }
480
481 struct linux_prom_translation prom_trans[512] __read_mostly;
482 unsigned int prom_trans_ents __read_mostly;
483
484 unsigned long kern_locked_tte_data;
485
486 /* The obp translations are saved based on 8k pagesize, since obp can
487  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
488  * HI_OBP_ADDRESS range are handled in ktlb.S.
489  */
490 static inline int in_obp_range(unsigned long vaddr)
491 {
492         return (vaddr >= LOW_OBP_ADDRESS &&
493                 vaddr < HI_OBP_ADDRESS);
494 }
495
496 static int cmp_ptrans(const void *a, const void *b)
497 {
498         const struct linux_prom_translation *x = a, *y = b;
499
500         if (x->virt > y->virt)
501                 return 1;
502         if (x->virt < y->virt)
503                 return -1;
504         return 0;
505 }
506
507 /* Read OBP translations property into 'prom_trans[]'.  */
508 static void __init read_obp_translations(void)
509 {
510         int n, node, ents, first, last, i;
511
512         node = prom_finddevice("/virtual-memory");
513         n = prom_getproplen(node, "translations");
514         if (unlikely(n == 0 || n == -1)) {
515                 prom_printf("prom_mappings: Couldn't get size.\n");
516                 prom_halt();
517         }
518         if (unlikely(n > sizeof(prom_trans))) {
519                 prom_printf("prom_mappings: Size %d is too big.\n", n);
520                 prom_halt();
521         }
522
523         if ((n = prom_getproperty(node, "translations",
524                                   (char *)&prom_trans[0],
525                                   sizeof(prom_trans))) == -1) {
526                 prom_printf("prom_mappings: Couldn't get property.\n");
527                 prom_halt();
528         }
529
530         n = n / sizeof(struct linux_prom_translation);
531
532         ents = n;
533
534         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
535              cmp_ptrans, NULL);
536
537         /* Now kick out all the non-OBP entries.  */
538         for (i = 0; i < ents; i++) {
539                 if (in_obp_range(prom_trans[i].virt))
540                         break;
541         }
542         first = i;
543         for (; i < ents; i++) {
544                 if (!in_obp_range(prom_trans[i].virt))
545                         break;
546         }
547         last = i;
548
549         for (i = 0; i < (last - first); i++) {
550                 struct linux_prom_translation *src = &prom_trans[i + first];
551                 struct linux_prom_translation *dest = &prom_trans[i];
552
553                 *dest = *src;
554         }
555         for (; i < ents; i++) {
556                 struct linux_prom_translation *dest = &prom_trans[i];
557                 dest->virt = dest->size = dest->data = 0x0UL;
558         }
559
560         prom_trans_ents = last - first;
561
562         if (tlb_type == spitfire) {
563                 /* Clear diag TTE bits. */
564                 for (i = 0; i < prom_trans_ents; i++)
565                         prom_trans[i].data &= ~0x0003fe0000000000UL;
566         }
567
568         /* Force execute bit on.  */
569         for (i = 0; i < prom_trans_ents; i++)
570                 prom_trans[i].data |= (tlb_type == hypervisor ?
571                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
572 }
573
574 static void __init hypervisor_tlb_lock(unsigned long vaddr,
575                                        unsigned long pte,
576                                        unsigned long mmu)
577 {
578         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
579
580         if (ret != 0) {
581                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
582                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
583                 prom_halt();
584         }
585 }
586
587 static unsigned long kern_large_tte(unsigned long paddr);
588
589 static void __init remap_kernel(void)
590 {
591         unsigned long phys_page, tte_vaddr, tte_data;
592         int i, tlb_ent = sparc64_highest_locked_tlbent();
593
594         tte_vaddr = (unsigned long) KERNBASE;
595         phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
596         tte_data = kern_large_tte(phys_page);
597
598         kern_locked_tte_data = tte_data;
599
600         /* Now lock us into the TLBs via Hypervisor or OBP. */
601         if (tlb_type == hypervisor) {
602                 for (i = 0; i < num_kernel_image_mappings; i++) {
603                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
604                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
605                         tte_vaddr += 0x400000;
606                         tte_data += 0x400000;
607                 }
608         } else {
609                 for (i = 0; i < num_kernel_image_mappings; i++) {
610                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
611                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
612                         tte_vaddr += 0x400000;
613                         tte_data += 0x400000;
614                 }
615                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
616         }
617         if (tlb_type == cheetah_plus) {
618                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
619                                             CTX_CHEETAH_PLUS_NUC);
620                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
621                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
622         }
623 }
624
625
626 static void __init inherit_prom_mappings(void)
627 {
628         /* Now fixup OBP's idea about where we really are mapped. */
629         printk("Remapping the kernel... ");
630         remap_kernel();
631         printk("done.\n");
632 }
633
634 void prom_world(int enter)
635 {
636         if (!enter)
637                 set_fs(get_fs());
638
639         __asm__ __volatile__("flushw");
640 }
641
642 void __flush_dcache_range(unsigned long start, unsigned long end)
643 {
644         unsigned long va;
645
646         if (tlb_type == spitfire) {
647                 int n = 0;
648
649                 for (va = start; va < end; va += 32) {
650                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
651                         if (++n >= 512)
652                                 break;
653                 }
654         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
655                 start = __pa(start);
656                 end = __pa(end);
657                 for (va = start; va < end; va += 32)
658                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
659                                              "membar #Sync"
660                                              : /* no outputs */
661                                              : "r" (va),
662                                                "i" (ASI_DCACHE_INVALIDATE));
663         }
664 }
665 EXPORT_SYMBOL(__flush_dcache_range);
666
667 /* get_new_mmu_context() uses "cache + 1".  */
668 DEFINE_SPINLOCK(ctx_alloc_lock);
669 unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
670 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
671 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
672 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
673
674 /* Caller does TLB context flushing on local CPU if necessary.
675  * The caller also ensures that CTX_VALID(mm->context) is false.
676  *
677  * We must be careful about boundary cases so that we never
678  * let the user have CTX 0 (nucleus) or we ever use a CTX
679  * version of zero (and thus NO_CONTEXT would not be caught
680  * by version mis-match tests in mmu_context.h).
681  *
682  * Always invoked with interrupts disabled.
683  */
684 void get_new_mmu_context(struct mm_struct *mm)
685 {
686         unsigned long ctx, new_ctx;
687         unsigned long orig_pgsz_bits;
688         int new_version;
689
690         spin_lock(&ctx_alloc_lock);
691         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
692         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
693         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
694         new_version = 0;
695         if (new_ctx >= (1 << CTX_NR_BITS)) {
696                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
697                 if (new_ctx >= ctx) {
698                         int i;
699                         new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
700                                 CTX_FIRST_VERSION;
701                         if (new_ctx == 1)
702                                 new_ctx = CTX_FIRST_VERSION;
703
704                         /* Don't call memset, for 16 entries that's just
705                          * plain silly...
706                          */
707                         mmu_context_bmap[0] = 3;
708                         mmu_context_bmap[1] = 0;
709                         mmu_context_bmap[2] = 0;
710                         mmu_context_bmap[3] = 0;
711                         for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
712                                 mmu_context_bmap[i + 0] = 0;
713                                 mmu_context_bmap[i + 1] = 0;
714                                 mmu_context_bmap[i + 2] = 0;
715                                 mmu_context_bmap[i + 3] = 0;
716                         }
717                         new_version = 1;
718                         goto out;
719                 }
720         }
721         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
722         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
723 out:
724         tlb_context_cache = new_ctx;
725         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
726         spin_unlock(&ctx_alloc_lock);
727
728         if (unlikely(new_version))
729                 smp_new_mmu_context_version();
730 }
731
732 static int numa_enabled = 1;
733 static int numa_debug;
734
735 static int __init early_numa(char *p)
736 {
737         if (!p)
738                 return 0;
739
740         if (strstr(p, "off"))
741                 numa_enabled = 0;
742
743         if (strstr(p, "debug"))
744                 numa_debug = 1;
745
746         return 0;
747 }
748 early_param("numa", early_numa);
749
750 #define numadbg(f, a...) \
751 do {    if (numa_debug) \
752                 printk(KERN_INFO f, ## a); \
753 } while (0)
754
755 static void __init find_ramdisk(unsigned long phys_base)
756 {
757 #ifdef CONFIG_BLK_DEV_INITRD
758         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
759                 unsigned long ramdisk_image;
760
761                 /* Older versions of the bootloader only supported a
762                  * 32-bit physical address for the ramdisk image
763                  * location, stored at sparc_ramdisk_image.  Newer
764                  * SILO versions set sparc_ramdisk_image to zero and
765                  * provide a full 64-bit physical address at
766                  * sparc_ramdisk_image64.
767                  */
768                 ramdisk_image = sparc_ramdisk_image;
769                 if (!ramdisk_image)
770                         ramdisk_image = sparc_ramdisk_image64;
771
772                 /* Another bootloader quirk.  The bootloader normalizes
773                  * the physical address to KERNBASE, so we have to
774                  * factor that back out and add in the lowest valid
775                  * physical page address to get the true physical address.
776                  */
777                 ramdisk_image -= KERNBASE;
778                 ramdisk_image += phys_base;
779
780                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
781                         ramdisk_image, sparc_ramdisk_size);
782
783                 initrd_start = ramdisk_image;
784                 initrd_end = ramdisk_image + sparc_ramdisk_size;
785
786                 memblock_reserve(initrd_start, sparc_ramdisk_size);
787
788                 initrd_start += PAGE_OFFSET;
789                 initrd_end += PAGE_OFFSET;
790         }
791 #endif
792 }
793
794 struct node_mem_mask {
795         unsigned long mask;
796         unsigned long val;
797 };
798 static struct node_mem_mask node_masks[MAX_NUMNODES];
799 static int num_node_masks;
800
801 int numa_cpu_lookup_table[NR_CPUS];
802 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
803
804 #ifdef CONFIG_NEED_MULTIPLE_NODES
805
806 struct mdesc_mblock {
807         u64     base;
808         u64     size;
809         u64     offset; /* RA-to-PA */
810 };
811 static struct mdesc_mblock *mblocks;
812 static int num_mblocks;
813
814 static unsigned long ra_to_pa(unsigned long addr)
815 {
816         int i;
817
818         for (i = 0; i < num_mblocks; i++) {
819                 struct mdesc_mblock *m = &mblocks[i];
820
821                 if (addr >= m->base &&
822                     addr < (m->base + m->size)) {
823                         addr += m->offset;
824                         break;
825                 }
826         }
827         return addr;
828 }
829
830 static int find_node(unsigned long addr)
831 {
832         int i;
833
834         addr = ra_to_pa(addr);
835         for (i = 0; i < num_node_masks; i++) {
836                 struct node_mem_mask *p = &node_masks[i];
837
838                 if ((addr & p->mask) == p->val)
839                         return i;
840         }
841         return -1;
842 }
843
844 static u64 memblock_nid_range(u64 start, u64 end, int *nid)
845 {
846         *nid = find_node(start);
847         start += PAGE_SIZE;
848         while (start < end) {
849                 int n = find_node(start);
850
851                 if (n != *nid)
852                         break;
853                 start += PAGE_SIZE;
854         }
855
856         if (start > end)
857                 start = end;
858
859         return start;
860 }
861 #endif
862
863 /* This must be invoked after performing all of the necessary
864  * memblock_set_node() calls for 'nid'.  We need to be able to get
865  * correct data from get_pfn_range_for_nid().
866  */
867 static void __init allocate_node_data(int nid)
868 {
869         struct pglist_data *p;
870         unsigned long start_pfn, end_pfn;
871 #ifdef CONFIG_NEED_MULTIPLE_NODES
872         unsigned long paddr;
873
874         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
875         if (!paddr) {
876                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
877                 prom_halt();
878         }
879         NODE_DATA(nid) = __va(paddr);
880         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
881
882         NODE_DATA(nid)->node_id = nid;
883 #endif
884
885         p = NODE_DATA(nid);
886
887         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
888         p->node_start_pfn = start_pfn;
889         p->node_spanned_pages = end_pfn - start_pfn;
890 }
891
892 static void init_node_masks_nonnuma(void)
893 {
894         int i;
895
896         numadbg("Initializing tables for non-numa.\n");
897
898         node_masks[0].mask = node_masks[0].val = 0;
899         num_node_masks = 1;
900
901         for (i = 0; i < NR_CPUS; i++)
902                 numa_cpu_lookup_table[i] = 0;
903
904         cpumask_setall(&numa_cpumask_lookup_table[0]);
905 }
906
907 #ifdef CONFIG_NEED_MULTIPLE_NODES
908 struct pglist_data *node_data[MAX_NUMNODES];
909
910 EXPORT_SYMBOL(numa_cpu_lookup_table);
911 EXPORT_SYMBOL(numa_cpumask_lookup_table);
912 EXPORT_SYMBOL(node_data);
913
914 struct mdesc_mlgroup {
915         u64     node;
916         u64     latency;
917         u64     match;
918         u64     mask;
919 };
920 static struct mdesc_mlgroup *mlgroups;
921 static int num_mlgroups;
922
923 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
924                                    u32 cfg_handle)
925 {
926         u64 arc;
927
928         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
929                 u64 target = mdesc_arc_target(md, arc);
930                 const u64 *val;
931
932                 val = mdesc_get_property(md, target,
933                                          "cfg-handle", NULL);
934                 if (val && *val == cfg_handle)
935                         return 0;
936         }
937         return -ENODEV;
938 }
939
940 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
941                                     u32 cfg_handle)
942 {
943         u64 arc, candidate, best_latency = ~(u64)0;
944
945         candidate = MDESC_NODE_NULL;
946         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
947                 u64 target = mdesc_arc_target(md, arc);
948                 const char *name = mdesc_node_name(md, target);
949                 const u64 *val;
950
951                 if (strcmp(name, "pio-latency-group"))
952                         continue;
953
954                 val = mdesc_get_property(md, target, "latency", NULL);
955                 if (!val)
956                         continue;
957
958                 if (*val < best_latency) {
959                         candidate = target;
960                         best_latency = *val;
961                 }
962         }
963
964         if (candidate == MDESC_NODE_NULL)
965                 return -ENODEV;
966
967         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
968 }
969
970 int of_node_to_nid(struct device_node *dp)
971 {
972         const struct linux_prom64_registers *regs;
973         struct mdesc_handle *md;
974         u32 cfg_handle;
975         int count, nid;
976         u64 grp;
977
978         /* This is the right thing to do on currently supported
979          * SUN4U NUMA platforms as well, as the PCI controller does
980          * not sit behind any particular memory controller.
981          */
982         if (!mlgroups)
983                 return -1;
984
985         regs = of_get_property(dp, "reg", NULL);
986         if (!regs)
987                 return -1;
988
989         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
990
991         md = mdesc_grab();
992
993         count = 0;
994         nid = -1;
995         mdesc_for_each_node_by_name(md, grp, "group") {
996                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
997                         nid = count;
998                         break;
999                 }
1000                 count++;
1001         }
1002
1003         mdesc_release(md);
1004
1005         return nid;
1006 }
1007
1008 static void __init add_node_ranges(void)
1009 {
1010         struct memblock_region *reg;
1011
1012         for_each_memblock(memory, reg) {
1013                 unsigned long size = reg->size;
1014                 unsigned long start, end;
1015
1016                 start = reg->base;
1017                 end = start + size;
1018                 while (start < end) {
1019                         unsigned long this_end;
1020                         int nid;
1021
1022                         this_end = memblock_nid_range(start, end, &nid);
1023
1024                         numadbg("Setting memblock NUMA node nid[%d] "
1025                                 "start[%lx] end[%lx]\n",
1026                                 nid, start, this_end);
1027
1028                         memblock_set_node(start, this_end - start, nid);
1029                         start = this_end;
1030                 }
1031         }
1032 }
1033
1034 static int __init grab_mlgroups(struct mdesc_handle *md)
1035 {
1036         unsigned long paddr;
1037         int count = 0;
1038         u64 node;
1039
1040         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1041                 count++;
1042         if (!count)
1043                 return -ENOENT;
1044
1045         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1046                           SMP_CACHE_BYTES);
1047         if (!paddr)
1048                 return -ENOMEM;
1049
1050         mlgroups = __va(paddr);
1051         num_mlgroups = count;
1052
1053         count = 0;
1054         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1055                 struct mdesc_mlgroup *m = &mlgroups[count++];
1056                 const u64 *val;
1057
1058                 m->node = node;
1059
1060                 val = mdesc_get_property(md, node, "latency", NULL);
1061                 m->latency = *val;
1062                 val = mdesc_get_property(md, node, "address-match", NULL);
1063                 m->match = *val;
1064                 val = mdesc_get_property(md, node, "address-mask", NULL);
1065                 m->mask = *val;
1066
1067                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1068                         "match[%llx] mask[%llx]\n",
1069                         count - 1, m->node, m->latency, m->match, m->mask);
1070         }
1071
1072         return 0;
1073 }
1074
1075 static int __init grab_mblocks(struct mdesc_handle *md)
1076 {
1077         unsigned long paddr;
1078         int count = 0;
1079         u64 node;
1080
1081         mdesc_for_each_node_by_name(md, node, "mblock")
1082                 count++;
1083         if (!count)
1084                 return -ENOENT;
1085
1086         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1087                           SMP_CACHE_BYTES);
1088         if (!paddr)
1089                 return -ENOMEM;
1090
1091         mblocks = __va(paddr);
1092         num_mblocks = count;
1093
1094         count = 0;
1095         mdesc_for_each_node_by_name(md, node, "mblock") {
1096                 struct mdesc_mblock *m = &mblocks[count++];
1097                 const u64 *val;
1098
1099                 val = mdesc_get_property(md, node, "base", NULL);
1100                 m->base = *val;
1101                 val = mdesc_get_property(md, node, "size", NULL);
1102                 m->size = *val;
1103                 val = mdesc_get_property(md, node,
1104                                          "address-congruence-offset", NULL);
1105
1106                 /* The address-congruence-offset property is optional.
1107                  * Explicity zero it be identifty this.
1108                  */
1109                 if (val)
1110                         m->offset = *val;
1111                 else
1112                         m->offset = 0UL;
1113
1114                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1115                         count - 1, m->base, m->size, m->offset);
1116         }
1117
1118         return 0;
1119 }
1120
1121 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1122                                                u64 grp, cpumask_t *mask)
1123 {
1124         u64 arc;
1125
1126         cpumask_clear(mask);
1127
1128         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1129                 u64 target = mdesc_arc_target(md, arc);
1130                 const char *name = mdesc_node_name(md, target);
1131                 const u64 *id;
1132
1133                 if (strcmp(name, "cpu"))
1134                         continue;
1135                 id = mdesc_get_property(md, target, "id", NULL);
1136                 if (*id < nr_cpu_ids)
1137                         cpumask_set_cpu(*id, mask);
1138         }
1139 }
1140
1141 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1142 {
1143         int i;
1144
1145         for (i = 0; i < num_mlgroups; i++) {
1146                 struct mdesc_mlgroup *m = &mlgroups[i];
1147                 if (m->node == node)
1148                         return m;
1149         }
1150         return NULL;
1151 }
1152
1153 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1154                                       int index)
1155 {
1156         struct mdesc_mlgroup *candidate = NULL;
1157         u64 arc, best_latency = ~(u64)0;
1158         struct node_mem_mask *n;
1159
1160         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1161                 u64 target = mdesc_arc_target(md, arc);
1162                 struct mdesc_mlgroup *m = find_mlgroup(target);
1163                 if (!m)
1164                         continue;
1165                 if (m->latency < best_latency) {
1166                         candidate = m;
1167                         best_latency = m->latency;
1168                 }
1169         }
1170         if (!candidate)
1171                 return -ENOENT;
1172
1173         if (num_node_masks != index) {
1174                 printk(KERN_ERR "Inconsistent NUMA state, "
1175                        "index[%d] != num_node_masks[%d]\n",
1176                        index, num_node_masks);
1177                 return -EINVAL;
1178         }
1179
1180         n = &node_masks[num_node_masks++];
1181
1182         n->mask = candidate->mask;
1183         n->val = candidate->match;
1184
1185         numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1186                 index, n->mask, n->val, candidate->latency);
1187
1188         return 0;
1189 }
1190
1191 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1192                                          int index)
1193 {
1194         cpumask_t mask;
1195         int cpu;
1196
1197         numa_parse_mdesc_group_cpus(md, grp, &mask);
1198
1199         for_each_cpu(cpu, &mask)
1200                 numa_cpu_lookup_table[cpu] = index;
1201         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1202
1203         if (numa_debug) {
1204                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1205                 for_each_cpu(cpu, &mask)
1206                         printk("%d ", cpu);
1207                 printk("]\n");
1208         }
1209
1210         return numa_attach_mlgroup(md, grp, index);
1211 }
1212
1213 static int __init numa_parse_mdesc(void)
1214 {
1215         struct mdesc_handle *md = mdesc_grab();
1216         int i, err, count;
1217         u64 node;
1218
1219         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1220         if (node == MDESC_NODE_NULL) {
1221                 mdesc_release(md);
1222                 return -ENOENT;
1223         }
1224
1225         err = grab_mblocks(md);
1226         if (err < 0)
1227                 goto out;
1228
1229         err = grab_mlgroups(md);
1230         if (err < 0)
1231                 goto out;
1232
1233         count = 0;
1234         mdesc_for_each_node_by_name(md, node, "group") {
1235                 err = numa_parse_mdesc_group(md, node, count);
1236                 if (err < 0)
1237                         break;
1238                 count++;
1239         }
1240
1241         add_node_ranges();
1242
1243         for (i = 0; i < num_node_masks; i++) {
1244                 allocate_node_data(i);
1245                 node_set_online(i);
1246         }
1247
1248         err = 0;
1249 out:
1250         mdesc_release(md);
1251         return err;
1252 }
1253
1254 static int __init numa_parse_jbus(void)
1255 {
1256         unsigned long cpu, index;
1257
1258         /* NUMA node id is encoded in bits 36 and higher, and there is
1259          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1260          */
1261         index = 0;
1262         for_each_present_cpu(cpu) {
1263                 numa_cpu_lookup_table[cpu] = index;
1264                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1265                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1266                 node_masks[index].val = cpu << 36UL;
1267
1268                 index++;
1269         }
1270         num_node_masks = index;
1271
1272         add_node_ranges();
1273
1274         for (index = 0; index < num_node_masks; index++) {
1275                 allocate_node_data(index);
1276                 node_set_online(index);
1277         }
1278
1279         return 0;
1280 }
1281
1282 static int __init numa_parse_sun4u(void)
1283 {
1284         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1285                 unsigned long ver;
1286
1287                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1288                 if ((ver >> 32UL) == __JALAPENO_ID ||
1289                     (ver >> 32UL) == __SERRANO_ID)
1290                         return numa_parse_jbus();
1291         }
1292         return -1;
1293 }
1294
1295 static int __init bootmem_init_numa(void)
1296 {
1297         int err = -1;
1298
1299         numadbg("bootmem_init_numa()\n");
1300
1301         if (numa_enabled) {
1302                 if (tlb_type == hypervisor)
1303                         err = numa_parse_mdesc();
1304                 else
1305                         err = numa_parse_sun4u();
1306         }
1307         return err;
1308 }
1309
1310 #else
1311
1312 static int bootmem_init_numa(void)
1313 {
1314         return -1;
1315 }
1316
1317 #endif
1318
1319 static void __init bootmem_init_nonnuma(void)
1320 {
1321         unsigned long top_of_ram = memblock_end_of_DRAM();
1322         unsigned long total_ram = memblock_phys_mem_size();
1323
1324         numadbg("bootmem_init_nonnuma()\n");
1325
1326         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1327                top_of_ram, total_ram);
1328         printk(KERN_INFO "Memory hole size: %ldMB\n",
1329                (top_of_ram - total_ram) >> 20);
1330
1331         init_node_masks_nonnuma();
1332         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0);
1333         allocate_node_data(0);
1334         node_set_online(0);
1335 }
1336
1337 static unsigned long __init bootmem_init(unsigned long phys_base)
1338 {
1339         unsigned long end_pfn;
1340
1341         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1342         max_pfn = max_low_pfn = end_pfn;
1343         min_low_pfn = (phys_base >> PAGE_SHIFT);
1344
1345         if (bootmem_init_numa() < 0)
1346                 bootmem_init_nonnuma();
1347
1348         /* Dump memblock with node info. */
1349         memblock_dump_all();
1350
1351         /* XXX cpu notifier XXX */
1352
1353         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1354         sparse_init();
1355
1356         return end_pfn;
1357 }
1358
1359 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1360 static int pall_ents __initdata;
1361
1362 #ifdef CONFIG_DEBUG_PAGEALLOC
1363 static unsigned long __ref kernel_map_range(unsigned long pstart,
1364                                             unsigned long pend, pgprot_t prot)
1365 {
1366         unsigned long vstart = PAGE_OFFSET + pstart;
1367         unsigned long vend = PAGE_OFFSET + pend;
1368         unsigned long alloc_bytes = 0UL;
1369
1370         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1371                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1372                             vstart, vend);
1373                 prom_halt();
1374         }
1375
1376         while (vstart < vend) {
1377                 unsigned long this_end, paddr = __pa(vstart);
1378                 pgd_t *pgd = pgd_offset_k(vstart);
1379                 pud_t *pud;
1380                 pmd_t *pmd;
1381                 pte_t *pte;
1382
1383                 pud = pud_offset(pgd, vstart);
1384                 if (pud_none(*pud)) {
1385                         pmd_t *new;
1386
1387                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1388                         alloc_bytes += PAGE_SIZE;
1389                         pud_populate(&init_mm, pud, new);
1390                 }
1391
1392                 pmd = pmd_offset(pud, vstart);
1393                 if (!pmd_present(*pmd)) {
1394                         pte_t *new;
1395
1396                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1397                         alloc_bytes += PAGE_SIZE;
1398                         pmd_populate_kernel(&init_mm, pmd, new);
1399                 }
1400
1401                 pte = pte_offset_kernel(pmd, vstart);
1402                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1403                 if (this_end > vend)
1404                         this_end = vend;
1405
1406                 while (vstart < this_end) {
1407                         pte_val(*pte) = (paddr | pgprot_val(prot));
1408
1409                         vstart += PAGE_SIZE;
1410                         paddr += PAGE_SIZE;
1411                         pte++;
1412                 }
1413         }
1414
1415         return alloc_bytes;
1416 }
1417
1418 extern unsigned int kvmap_linear_patch[1];
1419 #endif /* CONFIG_DEBUG_PAGEALLOC */
1420
1421 static void __init kpte_set_val(unsigned long index, unsigned long val)
1422 {
1423         unsigned long *ptr = kpte_linear_bitmap;
1424
1425         val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1426         ptr += (index / (BITS_PER_LONG / 2));
1427
1428         *ptr |= val;
1429 }
1430
1431 static const unsigned long kpte_shift_min = 28; /* 256MB */
1432 static const unsigned long kpte_shift_max = 34; /* 16GB */
1433 static const unsigned long kpte_shift_incr = 3;
1434
1435 static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1436                                            unsigned long shift)
1437 {
1438         unsigned long size = (1UL << shift);
1439         unsigned long mask = (size - 1UL);
1440         unsigned long remains = end - start;
1441         unsigned long val;
1442
1443         if (remains < size || (start & mask))
1444                 return start;
1445
1446         /* VAL maps:
1447          *
1448          *      shift 28 --> kern_linear_pte_xor index 1
1449          *      shift 31 --> kern_linear_pte_xor index 2
1450          *      shift 34 --> kern_linear_pte_xor index 3
1451          */
1452         val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1453
1454         remains &= ~mask;
1455         if (shift != kpte_shift_max)
1456                 remains = size;
1457
1458         while (remains) {
1459                 unsigned long index = start >> kpte_shift_min;
1460
1461                 kpte_set_val(index, val);
1462
1463                 start += 1UL << kpte_shift_min;
1464                 remains -= 1UL << kpte_shift_min;
1465         }
1466
1467         return start;
1468 }
1469
1470 static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1471 {
1472         unsigned long smallest_size, smallest_mask;
1473         unsigned long s;
1474
1475         smallest_size = (1UL << kpte_shift_min);
1476         smallest_mask = (smallest_size - 1UL);
1477
1478         while (start < end) {
1479                 unsigned long orig_start = start;
1480
1481                 for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1482                         start = kpte_mark_using_shift(start, end, s);
1483
1484                         if (start != orig_start)
1485                                 break;
1486                 }
1487
1488                 if (start == orig_start)
1489                         start = (start + smallest_size) & ~smallest_mask;
1490         }
1491 }
1492
1493 static void __init init_kpte_bitmap(void)
1494 {
1495         unsigned long i;
1496
1497         for (i = 0; i < pall_ents; i++) {
1498                 unsigned long phys_start, phys_end;
1499
1500                 phys_start = pall[i].phys_addr;
1501                 phys_end = phys_start + pall[i].reg_size;
1502
1503                 mark_kpte_bitmap(phys_start, phys_end);
1504         }
1505 }
1506
1507 static void __init kernel_physical_mapping_init(void)
1508 {
1509 #ifdef CONFIG_DEBUG_PAGEALLOC
1510         unsigned long i, mem_alloced = 0UL;
1511
1512         for (i = 0; i < pall_ents; i++) {
1513                 unsigned long phys_start, phys_end;
1514
1515                 phys_start = pall[i].phys_addr;
1516                 phys_end = phys_start + pall[i].reg_size;
1517
1518                 mem_alloced += kernel_map_range(phys_start, phys_end,
1519                                                 PAGE_KERNEL);
1520         }
1521
1522         printk("Allocated %ld bytes for kernel page tables.\n",
1523                mem_alloced);
1524
1525         kvmap_linear_patch[0] = 0x01000000; /* nop */
1526         flushi(&kvmap_linear_patch[0]);
1527
1528         __flush_tlb_all();
1529 #endif
1530 }
1531
1532 #ifdef CONFIG_DEBUG_PAGEALLOC
1533 void kernel_map_pages(struct page *page, int numpages, int enable)
1534 {
1535         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1536         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1537
1538         kernel_map_range(phys_start, phys_end,
1539                          (enable ? PAGE_KERNEL : __pgprot(0)));
1540
1541         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1542                                PAGE_OFFSET + phys_end);
1543
1544         /* we should perform an IPI and flush all tlbs,
1545          * but that can deadlock->flush only current cpu.
1546          */
1547         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1548                                  PAGE_OFFSET + phys_end);
1549 }
1550 #endif
1551
1552 unsigned long __init find_ecache_flush_span(unsigned long size)
1553 {
1554         int i;
1555
1556         for (i = 0; i < pavail_ents; i++) {
1557                 if (pavail[i].reg_size >= size)
1558                         return pavail[i].phys_addr;
1559         }
1560
1561         return ~0UL;
1562 }
1563
1564 static void __init tsb_phys_patch(void)
1565 {
1566         struct tsb_ldquad_phys_patch_entry *pquad;
1567         struct tsb_phys_patch_entry *p;
1568
1569         pquad = &__tsb_ldquad_phys_patch;
1570         while (pquad < &__tsb_ldquad_phys_patch_end) {
1571                 unsigned long addr = pquad->addr;
1572
1573                 if (tlb_type == hypervisor)
1574                         *(unsigned int *) addr = pquad->sun4v_insn;
1575                 else
1576                         *(unsigned int *) addr = pquad->sun4u_insn;
1577                 wmb();
1578                 __asm__ __volatile__("flush     %0"
1579                                      : /* no outputs */
1580                                      : "r" (addr));
1581
1582                 pquad++;
1583         }
1584
1585         p = &__tsb_phys_patch;
1586         while (p < &__tsb_phys_patch_end) {
1587                 unsigned long addr = p->addr;
1588
1589                 *(unsigned int *) addr = p->insn;
1590                 wmb();
1591                 __asm__ __volatile__("flush     %0"
1592                                      : /* no outputs */
1593                                      : "r" (addr));
1594
1595                 p++;
1596         }
1597 }
1598
1599 /* Don't mark as init, we give this to the Hypervisor.  */
1600 #ifndef CONFIG_DEBUG_PAGEALLOC
1601 #define NUM_KTSB_DESCR  2
1602 #else
1603 #define NUM_KTSB_DESCR  1
1604 #endif
1605 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1606 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
1607
1608 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1609 {
1610         pa >>= KTSB_PHYS_SHIFT;
1611
1612         while (start < end) {
1613                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
1614
1615                 ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1616                 __asm__ __volatile__("flush     %0" : : "r" (ia));
1617
1618                 ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1619                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
1620
1621                 start++;
1622         }
1623 }
1624
1625 static void ktsb_phys_patch(void)
1626 {
1627         extern unsigned int __swapper_tsb_phys_patch;
1628         extern unsigned int __swapper_tsb_phys_patch_end;
1629         unsigned long ktsb_pa;
1630
1631         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1632         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1633                             &__swapper_tsb_phys_patch_end, ktsb_pa);
1634 #ifndef CONFIG_DEBUG_PAGEALLOC
1635         {
1636         extern unsigned int __swapper_4m_tsb_phys_patch;
1637         extern unsigned int __swapper_4m_tsb_phys_patch_end;
1638         ktsb_pa = (kern_base +
1639                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1640         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1641                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1642         }
1643 #endif
1644 }
1645
1646 static void __init sun4v_ktsb_init(void)
1647 {
1648         unsigned long ktsb_pa;
1649
1650         /* First KTSB for PAGE_SIZE mappings.  */
1651         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1652
1653         switch (PAGE_SIZE) {
1654         case 8 * 1024:
1655         default:
1656                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1657                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1658                 break;
1659
1660         case 64 * 1024:
1661                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1662                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1663                 break;
1664
1665         case 512 * 1024:
1666                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1667                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1668                 break;
1669
1670         case 4 * 1024 * 1024:
1671                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1672                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1673                 break;
1674         }
1675
1676         ktsb_descr[0].assoc = 1;
1677         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1678         ktsb_descr[0].ctx_idx = 0;
1679         ktsb_descr[0].tsb_base = ktsb_pa;
1680         ktsb_descr[0].resv = 0;
1681
1682 #ifndef CONFIG_DEBUG_PAGEALLOC
1683         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1684         ktsb_pa = (kern_base +
1685                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1686
1687         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1688         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1689                                     HV_PGSZ_MASK_256MB |
1690                                     HV_PGSZ_MASK_2GB |
1691                                     HV_PGSZ_MASK_16GB) &
1692                                    cpu_pgsz_mask);
1693         ktsb_descr[1].assoc = 1;
1694         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1695         ktsb_descr[1].ctx_idx = 0;
1696         ktsb_descr[1].tsb_base = ktsb_pa;
1697         ktsb_descr[1].resv = 0;
1698 #endif
1699 }
1700
1701 void __cpuinit sun4v_ktsb_register(void)
1702 {
1703         unsigned long pa, ret;
1704
1705         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1706
1707         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1708         if (ret != 0) {
1709                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1710                             "errors with %lx\n", pa, ret);
1711                 prom_halt();
1712         }
1713 }
1714
1715 static void __init sun4u_linear_pte_xor_finalize(void)
1716 {
1717 #ifndef CONFIG_DEBUG_PAGEALLOC
1718         /* This is where we would add Panther support for
1719          * 32MB and 256MB pages.
1720          */
1721 #endif
1722 }
1723
1724 static void __init sun4v_linear_pte_xor_finalize(void)
1725 {
1726 #ifndef CONFIG_DEBUG_PAGEALLOC
1727         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1728                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1729                         0xfffff80000000000UL;
1730                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1731                                            _PAGE_P_4V | _PAGE_W_4V);
1732         } else {
1733                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1734         }
1735
1736         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1737                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1738                         0xfffff80000000000UL;
1739                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1740                                            _PAGE_P_4V | _PAGE_W_4V);
1741         } else {
1742                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1743         }
1744
1745         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1746                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1747                         0xfffff80000000000UL;
1748                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1749                                            _PAGE_P_4V | _PAGE_W_4V);
1750         } else {
1751                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1752         }
1753 #endif
1754 }
1755
1756 /* paging_init() sets up the page tables */
1757
1758 static unsigned long last_valid_pfn;
1759 pgd_t swapper_pg_dir[2048];
1760
1761 static void sun4u_pgprot_init(void);
1762 static void sun4v_pgprot_init(void);
1763
1764 void __init paging_init(void)
1765 {
1766         unsigned long end_pfn, shift, phys_base;
1767         unsigned long real_end, i;
1768         int node;
1769
1770         /* These build time checkes make sure that the dcache_dirty_cpu()
1771          * page->flags usage will work.
1772          *
1773          * When a page gets marked as dcache-dirty, we store the
1774          * cpu number starting at bit 32 in the page->flags.  Also,
1775          * functions like clear_dcache_dirty_cpu use the cpu mask
1776          * in 13-bit signed-immediate instruction fields.
1777          */
1778
1779         /*
1780          * Page flags must not reach into upper 32 bits that are used
1781          * for the cpu number
1782          */
1783         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1784
1785         /*
1786          * The bit fields placed in the high range must not reach below
1787          * the 32 bit boundary. Otherwise we cannot place the cpu field
1788          * at the 32 bit boundary.
1789          */
1790         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1791                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1792
1793         BUILD_BUG_ON(NR_CPUS > 4096);
1794
1795         kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
1796         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1797
1798         /* Invalidate both kernel TSBs.  */
1799         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1800 #ifndef CONFIG_DEBUG_PAGEALLOC
1801         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1802 #endif
1803
1804         if (tlb_type == hypervisor)
1805                 sun4v_pgprot_init();
1806         else
1807                 sun4u_pgprot_init();
1808
1809         if (tlb_type == cheetah_plus ||
1810             tlb_type == hypervisor) {
1811                 tsb_phys_patch();
1812                 ktsb_phys_patch();
1813         }
1814
1815         if (tlb_type == hypervisor)
1816                 sun4v_patch_tlb_handlers();
1817
1818         /* Find available physical memory...
1819          *
1820          * Read it twice in order to work around a bug in openfirmware.
1821          * The call to grab this table itself can cause openfirmware to
1822          * allocate memory, which in turn can take away some space from
1823          * the list of available memory.  Reading it twice makes sure
1824          * we really do get the final value.
1825          */
1826         read_obp_translations();
1827         read_obp_memory("reg", &pall[0], &pall_ents);
1828         read_obp_memory("available", &pavail[0], &pavail_ents);
1829         read_obp_memory("available", &pavail[0], &pavail_ents);
1830
1831         phys_base = 0xffffffffffffffffUL;
1832         for (i = 0; i < pavail_ents; i++) {
1833                 phys_base = min(phys_base, pavail[i].phys_addr);
1834                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1835         }
1836
1837         memblock_reserve(kern_base, kern_size);
1838
1839         find_ramdisk(phys_base);
1840
1841         memblock_enforce_memory_limit(cmdline_memory_size);
1842
1843         memblock_allow_resize();
1844         memblock_dump_all();
1845
1846         set_bit(0, mmu_context_bmap);
1847
1848         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1849
1850         real_end = (unsigned long)_end;
1851         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
1852         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1853                num_kernel_image_mappings);
1854
1855         /* Set kernel pgd to upper alias so physical page computations
1856          * work.
1857          */
1858         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1859         
1860         memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1861
1862         /* Now can init the kernel/bad page tables. */
1863         pud_set(pud_offset(&swapper_pg_dir[0], 0),
1864                 swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1865         
1866         inherit_prom_mappings();
1867         
1868         init_kpte_bitmap();
1869
1870         /* Ok, we can use our TLB miss and window trap handlers safely.  */
1871         setup_tba();
1872
1873         __flush_tlb_all();
1874
1875         prom_build_devicetree();
1876         of_populate_present_mask();
1877 #ifndef CONFIG_SMP
1878         of_fill_in_cpu_data();
1879 #endif
1880
1881         if (tlb_type == hypervisor) {
1882                 sun4v_mdesc_init();
1883                 mdesc_populate_present_mask(cpu_all_mask);
1884 #ifndef CONFIG_SMP
1885                 mdesc_fill_in_cpu_data(cpu_all_mask);
1886 #endif
1887                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1888
1889                 sun4v_linear_pte_xor_finalize();
1890
1891                 sun4v_ktsb_init();
1892                 sun4v_ktsb_register();
1893         } else {
1894                 unsigned long impl, ver;
1895
1896                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1897                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1898
1899                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1900                 impl = ((ver >> 32) & 0xffff);
1901                 if (impl == PANTHER_IMPL)
1902                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1903                                           HV_PGSZ_MASK_256MB);
1904
1905                 sun4u_linear_pte_xor_finalize();
1906         }
1907
1908         /* Flush the TLBs and the 4M TSB so that the updated linear
1909          * pte XOR settings are realized for all mappings.
1910          */
1911         __flush_tlb_all();
1912 #ifndef CONFIG_DEBUG_PAGEALLOC
1913         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1914 #endif
1915         __flush_tlb_all();
1916
1917         /* Setup bootmem... */
1918         last_valid_pfn = end_pfn = bootmem_init(phys_base);
1919
1920         /* Once the OF device tree and MDESC have been setup, we know
1921          * the list of possible cpus.  Therefore we can allocate the
1922          * IRQ stacks.
1923          */
1924         for_each_possible_cpu(i) {
1925                 node = cpu_to_node(i);
1926
1927                 softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1928                                                         THREAD_SIZE,
1929                                                         THREAD_SIZE, 0);
1930                 hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
1931                                                         THREAD_SIZE,
1932                                                         THREAD_SIZE, 0);
1933         }
1934
1935         kernel_physical_mapping_init();
1936
1937         {
1938                 unsigned long max_zone_pfns[MAX_NR_ZONES];
1939
1940                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1941
1942                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
1943
1944                 free_area_init_nodes(max_zone_pfns);
1945         }
1946
1947         printk("Booting Linux...\n");
1948 }
1949
1950 int page_in_phys_avail(unsigned long paddr)
1951 {
1952         int i;
1953
1954         paddr &= PAGE_MASK;
1955
1956         for (i = 0; i < pavail_ents; i++) {
1957                 unsigned long start, end;
1958
1959                 start = pavail[i].phys_addr;
1960                 end = start + pavail[i].reg_size;
1961
1962                 if (paddr >= start && paddr < end)
1963                         return 1;
1964         }
1965         if (paddr >= kern_base && paddr < (kern_base + kern_size))
1966                 return 1;
1967 #ifdef CONFIG_BLK_DEV_INITRD
1968         if (paddr >= __pa(initrd_start) &&
1969             paddr < __pa(PAGE_ALIGN(initrd_end)))
1970                 return 1;
1971 #endif
1972
1973         return 0;
1974 }
1975
1976 static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
1977 static int pavail_rescan_ents __initdata;
1978
1979 /* Certain OBP calls, such as fetching "available" properties, can
1980  * claim physical memory.  So, along with initializing the valid
1981  * address bitmap, what we do here is refetch the physical available
1982  * memory list again, and make sure it provides at least as much
1983  * memory as 'pavail' does.
1984  */
1985 static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
1986 {
1987         int i;
1988
1989         read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
1990
1991         for (i = 0; i < pavail_ents; i++) {
1992                 unsigned long old_start, old_end;
1993
1994                 old_start = pavail[i].phys_addr;
1995                 old_end = old_start + pavail[i].reg_size;
1996                 while (old_start < old_end) {
1997                         int n;
1998
1999                         for (n = 0; n < pavail_rescan_ents; n++) {
2000                                 unsigned long new_start, new_end;
2001
2002                                 new_start = pavail_rescan[n].phys_addr;
2003                                 new_end = new_start +
2004                                         pavail_rescan[n].reg_size;
2005
2006                                 if (new_start <= old_start &&
2007                                     new_end >= (old_start + PAGE_SIZE)) {
2008                                         set_bit(old_start >> 22, bitmap);
2009                                         goto do_next_page;
2010                                 }
2011                         }
2012
2013                         prom_printf("mem_init: Lost memory in pavail\n");
2014                         prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2015                                     pavail[i].phys_addr,
2016                                     pavail[i].reg_size);
2017                         prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2018                                     pavail_rescan[i].phys_addr,
2019                                     pavail_rescan[i].reg_size);
2020                         prom_printf("mem_init: Cannot continue, aborting.\n");
2021                         prom_halt();
2022
2023                 do_next_page:
2024                         old_start += PAGE_SIZE;
2025                 }
2026         }
2027 }
2028
2029 static void __init patch_tlb_miss_handler_bitmap(void)
2030 {
2031         extern unsigned int valid_addr_bitmap_insn[];
2032         extern unsigned int valid_addr_bitmap_patch[];
2033
2034         valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2035         mb();
2036         valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2037         flushi(&valid_addr_bitmap_insn[0]);
2038 }
2039
2040 static void __init register_page_bootmem_info(void)
2041 {
2042 #ifdef CONFIG_NEED_MULTIPLE_NODES
2043         int i;
2044
2045         for_each_online_node(i)
2046                 if (NODE_DATA(i)->node_spanned_pages)
2047                         register_page_bootmem_info_node(NODE_DATA(i));
2048 #endif
2049 }
2050 void __init mem_init(void)
2051 {
2052         unsigned long codepages, datapages, initpages;
2053         unsigned long addr, last;
2054
2055         addr = PAGE_OFFSET + kern_base;
2056         last = PAGE_ALIGN(kern_size) + addr;
2057         while (addr < last) {
2058                 set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
2059                 addr += PAGE_SIZE;
2060         }
2061
2062         setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2063         patch_tlb_miss_handler_bitmap();
2064
2065         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2066
2067         register_page_bootmem_info();
2068         totalram_pages = free_all_bootmem();
2069
2070         /* We subtract one to account for the mem_map_zero page
2071          * allocated below.
2072          */
2073         num_physpages = totalram_pages - 1;
2074
2075         /*
2076          * Set up the zero page, mark it reserved, so that page count
2077          * is not manipulated when freeing the page from user ptes.
2078          */
2079         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2080         if (mem_map_zero == NULL) {
2081                 prom_printf("paging_init: Cannot alloc zero page.\n");
2082                 prom_halt();
2083         }
2084         mark_page_reserved(mem_map_zero);
2085
2086         codepages = (((unsigned long) _etext) - ((unsigned long) _start));
2087         codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
2088         datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
2089         datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
2090         initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
2091         initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
2092
2093         printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
2094                nr_free_pages() << (PAGE_SHIFT-10),
2095                codepages << (PAGE_SHIFT-10),
2096                datapages << (PAGE_SHIFT-10), 
2097                initpages << (PAGE_SHIFT-10), 
2098                PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
2099
2100         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2101                 cheetah_ecache_flush_init();
2102 }
2103
2104 void free_initmem(void)
2105 {
2106         unsigned long addr, initend;
2107         int do_free = 1;
2108
2109         /* If the physical memory maps were trimmed by kernel command
2110          * line options, don't even try freeing this initmem stuff up.
2111          * The kernel image could have been in the trimmed out region
2112          * and if so the freeing below will free invalid page structs.
2113          */
2114         if (cmdline_memory_size)
2115                 do_free = 0;
2116
2117         /*
2118          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2119          */
2120         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2121         initend = (unsigned long)(__init_end) & PAGE_MASK;
2122         for (; addr < initend; addr += PAGE_SIZE) {
2123                 unsigned long page;
2124
2125                 page = (addr +
2126                         ((unsigned long) __va(kern_base)) -
2127                         ((unsigned long) KERNBASE));
2128                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2129
2130                 if (do_free)
2131                         free_reserved_page(virt_to_page(page));
2132         }
2133 }
2134
2135 #ifdef CONFIG_BLK_DEV_INITRD
2136 void free_initrd_mem(unsigned long start, unsigned long end)
2137 {
2138         num_physpages += free_reserved_area(start, end, POISON_FREE_INITMEM,
2139                                             "initrd");
2140 }
2141 #endif
2142
2143 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2144 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2145 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2146 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2147 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2148 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2149
2150 pgprot_t PAGE_KERNEL __read_mostly;
2151 EXPORT_SYMBOL(PAGE_KERNEL);
2152
2153 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2154 pgprot_t PAGE_COPY __read_mostly;
2155
2156 pgprot_t PAGE_SHARED __read_mostly;
2157 EXPORT_SYMBOL(PAGE_SHARED);
2158
2159 unsigned long pg_iobits __read_mostly;
2160
2161 unsigned long _PAGE_IE __read_mostly;
2162 EXPORT_SYMBOL(_PAGE_IE);
2163
2164 unsigned long _PAGE_E __read_mostly;
2165 EXPORT_SYMBOL(_PAGE_E);
2166
2167 unsigned long _PAGE_CACHE __read_mostly;
2168 EXPORT_SYMBOL(_PAGE_CACHE);
2169
2170 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2171 unsigned long vmemmap_table[VMEMMAP_SIZE];
2172
2173 static long __meminitdata addr_start, addr_end;
2174 static int __meminitdata node_start;
2175
2176 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2177                                int node)
2178 {
2179         unsigned long phys_start = (vstart - VMEMMAP_BASE);
2180         unsigned long phys_end = (vend - VMEMMAP_BASE);
2181         unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2182         unsigned long end = VMEMMAP_ALIGN(phys_end);
2183         unsigned long pte_base;
2184
2185         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2186                     _PAGE_CP_4U | _PAGE_CV_4U |
2187                     _PAGE_P_4U | _PAGE_W_4U);
2188         if (tlb_type == hypervisor)
2189                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2190                             _PAGE_CP_4V | _PAGE_CV_4V |
2191                             _PAGE_P_4V | _PAGE_W_4V);
2192
2193         for (; addr < end; addr += VMEMMAP_CHUNK) {
2194                 unsigned long *vmem_pp =
2195                         vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2196                 void *block;
2197
2198                 if (!(*vmem_pp & _PAGE_VALID)) {
2199                         block = vmemmap_alloc_block(1UL << 22, node);
2200                         if (!block)
2201                                 return -ENOMEM;
2202
2203                         *vmem_pp = pte_base | __pa(block);
2204
2205                         /* check to see if we have contiguous blocks */
2206                         if (addr_end != addr || node_start != node) {
2207                                 if (addr_start)
2208                                         printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2209                                                addr_start, addr_end-1, node_start);
2210                                 addr_start = addr;
2211                                 node_start = node;
2212                         }
2213                         addr_end = addr + VMEMMAP_CHUNK;
2214                 }
2215         }
2216         return 0;
2217 }
2218
2219 void __meminit vmemmap_populate_print_last(void)
2220 {
2221         if (addr_start) {
2222                 printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2223                        addr_start, addr_end-1, node_start);
2224                 addr_start = 0;
2225                 addr_end = 0;
2226                 node_start = 0;
2227         }
2228 }
2229
2230 void vmemmap_free(unsigned long start, unsigned long end)
2231 {
2232 }
2233
2234 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2235
2236 static void prot_init_common(unsigned long page_none,
2237                              unsigned long page_shared,
2238                              unsigned long page_copy,
2239                              unsigned long page_readonly,
2240                              unsigned long page_exec_bit)
2241 {
2242         PAGE_COPY = __pgprot(page_copy);
2243         PAGE_SHARED = __pgprot(page_shared);
2244
2245         protection_map[0x0] = __pgprot(page_none);
2246         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2247         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2248         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2249         protection_map[0x4] = __pgprot(page_readonly);
2250         protection_map[0x5] = __pgprot(page_readonly);
2251         protection_map[0x6] = __pgprot(page_copy);
2252         protection_map[0x7] = __pgprot(page_copy);
2253         protection_map[0x8] = __pgprot(page_none);
2254         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2255         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2256         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2257         protection_map[0xc] = __pgprot(page_readonly);
2258         protection_map[0xd] = __pgprot(page_readonly);
2259         protection_map[0xe] = __pgprot(page_shared);
2260         protection_map[0xf] = __pgprot(page_shared);
2261 }
2262
2263 static void __init sun4u_pgprot_init(void)
2264 {
2265         unsigned long page_none, page_shared, page_copy, page_readonly;
2266         unsigned long page_exec_bit;
2267         int i;
2268
2269         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2270                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2271                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2272                                 _PAGE_EXEC_4U);
2273         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2274                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2275                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2276                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2277
2278         _PAGE_IE = _PAGE_IE_4U;
2279         _PAGE_E = _PAGE_E_4U;
2280         _PAGE_CACHE = _PAGE_CACHE_4U;
2281
2282         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2283                      __ACCESS_BITS_4U | _PAGE_E_4U);
2284
2285 #ifdef CONFIG_DEBUG_PAGEALLOC
2286         kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2287 #else
2288         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2289                 0xfffff80000000000UL;
2290 #endif
2291         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2292                                    _PAGE_P_4U | _PAGE_W_4U);
2293
2294         for (i = 1; i < 4; i++)
2295                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2296
2297         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2298                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2299                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2300
2301
2302         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2303         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2304                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2305         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2306                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2307         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2308                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2309
2310         page_exec_bit = _PAGE_EXEC_4U;
2311
2312         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2313                          page_exec_bit);
2314 }
2315
2316 static void __init sun4v_pgprot_init(void)
2317 {
2318         unsigned long page_none, page_shared, page_copy, page_readonly;
2319         unsigned long page_exec_bit;
2320         int i;
2321
2322         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2323                                 _PAGE_CACHE_4V | _PAGE_P_4V |
2324                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2325                                 _PAGE_EXEC_4V);
2326         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2327
2328         _PAGE_IE = _PAGE_IE_4V;
2329         _PAGE_E = _PAGE_E_4V;
2330         _PAGE_CACHE = _PAGE_CACHE_4V;
2331
2332 #ifdef CONFIG_DEBUG_PAGEALLOC
2333         kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
2334 #else
2335         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2336                 0xfffff80000000000UL;
2337 #endif
2338         kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2339                                    _PAGE_P_4V | _PAGE_W_4V);
2340
2341         for (i = 1; i < 4; i++)
2342                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2343
2344         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2345                      __ACCESS_BITS_4V | _PAGE_E_4V);
2346
2347         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2348                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2349                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2350                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2351
2352         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2353         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2354                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2355         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2356                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2357         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2358                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2359
2360         page_exec_bit = _PAGE_EXEC_4V;
2361
2362         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2363                          page_exec_bit);
2364 }
2365
2366 unsigned long pte_sz_bits(unsigned long sz)
2367 {
2368         if (tlb_type == hypervisor) {
2369                 switch (sz) {
2370                 case 8 * 1024:
2371                 default:
2372                         return _PAGE_SZ8K_4V;
2373                 case 64 * 1024:
2374                         return _PAGE_SZ64K_4V;
2375                 case 512 * 1024:
2376                         return _PAGE_SZ512K_4V;
2377                 case 4 * 1024 * 1024:
2378                         return _PAGE_SZ4MB_4V;
2379                 }
2380         } else {
2381                 switch (sz) {
2382                 case 8 * 1024:
2383                 default:
2384                         return _PAGE_SZ8K_4U;
2385                 case 64 * 1024:
2386                         return _PAGE_SZ64K_4U;
2387                 case 512 * 1024:
2388                         return _PAGE_SZ512K_4U;
2389                 case 4 * 1024 * 1024:
2390                         return _PAGE_SZ4MB_4U;
2391                 }
2392         }
2393 }
2394
2395 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2396 {
2397         pte_t pte;
2398
2399         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2400         pte_val(pte) |= (((unsigned long)space) << 32);
2401         pte_val(pte) |= pte_sz_bits(page_size);
2402
2403         return pte;
2404 }
2405
2406 static unsigned long kern_large_tte(unsigned long paddr)
2407 {
2408         unsigned long val;
2409
2410         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2411                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2412                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2413         if (tlb_type == hypervisor)
2414                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2415                        _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2416                        _PAGE_EXEC_4V | _PAGE_W_4V);
2417
2418         return val | paddr;
2419 }
2420
2421 /* If not locked, zap it. */
2422 void __flush_tlb_all(void)
2423 {
2424         unsigned long pstate;
2425         int i;
2426
2427         __asm__ __volatile__("flushw\n\t"
2428                              "rdpr      %%pstate, %0\n\t"
2429                              "wrpr      %0, %1, %%pstate"
2430                              : "=r" (pstate)
2431                              : "i" (PSTATE_IE));
2432         if (tlb_type == hypervisor) {
2433                 sun4v_mmu_demap_all();
2434         } else if (tlb_type == spitfire) {
2435                 for (i = 0; i < 64; i++) {
2436                         /* Spitfire Errata #32 workaround */
2437                         /* NOTE: Always runs on spitfire, so no
2438                          *       cheetah+ page size encodings.
2439                          */
2440                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2441                                              "flush     %%g6"
2442                                              : /* No outputs */
2443                                              : "r" (0),
2444                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2445
2446                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2447                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2448                                                      "membar #Sync"
2449                                                      : /* no outputs */
2450                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2451                                 spitfire_put_dtlb_data(i, 0x0UL);
2452                         }
2453
2454                         /* Spitfire Errata #32 workaround */
2455                         /* NOTE: Always runs on spitfire, so no
2456                          *       cheetah+ page size encodings.
2457                          */
2458                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2459                                              "flush     %%g6"
2460                                              : /* No outputs */
2461                                              : "r" (0),
2462                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2463
2464                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2465                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2466                                                      "membar #Sync"
2467                                                      : /* no outputs */
2468                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2469                                 spitfire_put_itlb_data(i, 0x0UL);
2470                         }
2471                 }
2472         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2473                 cheetah_flush_dtlb_all();
2474                 cheetah_flush_itlb_all();
2475         }
2476         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2477                              : : "r" (pstate));
2478 }
2479
2480 static pte_t *get_from_cache(struct mm_struct *mm)
2481 {
2482         struct page *page;
2483         pte_t *ret;
2484
2485         spin_lock(&mm->page_table_lock);
2486         page = mm->context.pgtable_page;
2487         ret = NULL;
2488         if (page) {
2489                 void *p = page_address(page);
2490
2491                 mm->context.pgtable_page = NULL;
2492
2493                 ret = (pte_t *) (p + (PAGE_SIZE / 2));
2494         }
2495         spin_unlock(&mm->page_table_lock);
2496
2497         return ret;
2498 }
2499
2500 static struct page *__alloc_for_cache(struct mm_struct *mm)
2501 {
2502         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2503                                        __GFP_REPEAT | __GFP_ZERO);
2504
2505         if (page) {
2506                 spin_lock(&mm->page_table_lock);
2507                 if (!mm->context.pgtable_page) {
2508                         atomic_set(&page->_count, 2);
2509                         mm->context.pgtable_page = page;
2510                 }
2511                 spin_unlock(&mm->page_table_lock);
2512         }
2513         return page;
2514 }
2515
2516 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2517                             unsigned long address)
2518 {
2519         struct page *page;
2520         pte_t *pte;
2521
2522         pte = get_from_cache(mm);
2523         if (pte)
2524                 return pte;
2525
2526         page = __alloc_for_cache(mm);
2527         if (page)
2528                 pte = (pte_t *) page_address(page);
2529
2530         return pte;
2531 }
2532
2533 pgtable_t pte_alloc_one(struct mm_struct *mm,
2534                         unsigned long address)
2535 {
2536         struct page *page;
2537         pte_t *pte;
2538
2539         pte = get_from_cache(mm);
2540         if (pte)
2541                 return pte;
2542
2543         page = __alloc_for_cache(mm);
2544         if (page) {
2545                 pgtable_page_ctor(page);
2546                 pte = (pte_t *) page_address(page);
2547         }
2548
2549         return pte;
2550 }
2551
2552 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2553 {
2554         struct page *page = virt_to_page(pte);
2555         if (put_page_testzero(page))
2556                 free_hot_cold_page(page, 0);
2557 }
2558
2559 static void __pte_free(pgtable_t pte)
2560 {
2561         struct page *page = virt_to_page(pte);
2562         if (put_page_testzero(page)) {
2563                 pgtable_page_dtor(page);
2564                 free_hot_cold_page(page, 0);
2565         }
2566 }
2567
2568 void pte_free(struct mm_struct *mm, pgtable_t pte)
2569 {
2570         __pte_free(pte);
2571 }
2572
2573 void pgtable_free(void *table, bool is_page)
2574 {
2575         if (is_page)
2576                 __pte_free(table);
2577         else
2578                 kmem_cache_free(pgtable_cache, table);
2579 }
2580
2581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2582 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot, bool for_modify)
2583 {
2584         if (pgprot_val(pgprot) & _PAGE_VALID)
2585                 pmd_val(pmd) |= PMD_HUGE_PRESENT;
2586         if (tlb_type == hypervisor) {
2587                 if (pgprot_val(pgprot) & _PAGE_WRITE_4V)
2588                         pmd_val(pmd) |= PMD_HUGE_WRITE;
2589                 if (pgprot_val(pgprot) & _PAGE_EXEC_4V)
2590                         pmd_val(pmd) |= PMD_HUGE_EXEC;
2591
2592                 if (!for_modify) {
2593                         if (pgprot_val(pgprot) & _PAGE_ACCESSED_4V)
2594                                 pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2595                         if (pgprot_val(pgprot) & _PAGE_MODIFIED_4V)
2596                                 pmd_val(pmd) |= PMD_HUGE_DIRTY;
2597                 }
2598         } else {
2599                 if (pgprot_val(pgprot) & _PAGE_WRITE_4U)
2600                         pmd_val(pmd) |= PMD_HUGE_WRITE;
2601                 if (pgprot_val(pgprot) & _PAGE_EXEC_4U)
2602                         pmd_val(pmd) |= PMD_HUGE_EXEC;
2603
2604                 if (!for_modify) {
2605                         if (pgprot_val(pgprot) & _PAGE_ACCESSED_4U)
2606                                 pmd_val(pmd) |= PMD_HUGE_ACCESSED;
2607                         if (pgprot_val(pgprot) & _PAGE_MODIFIED_4U)
2608                                 pmd_val(pmd) |= PMD_HUGE_DIRTY;
2609                 }
2610         }
2611
2612         return pmd;
2613 }
2614
2615 pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
2616 {
2617         pmd_t pmd;
2618
2619         pmd_val(pmd) = (page_nr << ((PAGE_SHIFT - PMD_PADDR_SHIFT)));
2620         pmd_val(pmd) |= PMD_ISHUGE;
2621         pmd = pmd_set_protbits(pmd, pgprot, false);
2622         return pmd;
2623 }
2624
2625 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
2626 {
2627         pmd_val(pmd) &= ~(PMD_HUGE_PRESENT |
2628                           PMD_HUGE_WRITE |
2629                           PMD_HUGE_EXEC);
2630         pmd = pmd_set_protbits(pmd, newprot, true);
2631         return pmd;
2632 }
2633
2634 pgprot_t pmd_pgprot(pmd_t entry)
2635 {
2636         unsigned long pte = 0;
2637
2638         if (pmd_val(entry) & PMD_HUGE_PRESENT)
2639                 pte |= _PAGE_VALID;
2640
2641         if (tlb_type == hypervisor) {
2642                 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2643                         pte |= _PAGE_PRESENT_4V;
2644                 if (pmd_val(entry) & PMD_HUGE_EXEC)
2645                         pte |= _PAGE_EXEC_4V;
2646                 if (pmd_val(entry) & PMD_HUGE_WRITE)
2647                         pte |= _PAGE_W_4V;
2648                 if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2649                         pte |= _PAGE_ACCESSED_4V;
2650                 if (pmd_val(entry) & PMD_HUGE_DIRTY)
2651                         pte |= _PAGE_MODIFIED_4V;
2652                 pte |= _PAGE_CP_4V|_PAGE_CV_4V;
2653         } else {
2654                 if (pmd_val(entry) & PMD_HUGE_PRESENT)
2655                         pte |= _PAGE_PRESENT_4U;
2656                 if (pmd_val(entry) & PMD_HUGE_EXEC)
2657                         pte |= _PAGE_EXEC_4U;
2658                 if (pmd_val(entry) & PMD_HUGE_WRITE)
2659                         pte |= _PAGE_W_4U;
2660                 if (pmd_val(entry) & PMD_HUGE_ACCESSED)
2661                         pte |= _PAGE_ACCESSED_4U;
2662                 if (pmd_val(entry) & PMD_HUGE_DIRTY)
2663                         pte |= _PAGE_MODIFIED_4U;
2664                 pte |= _PAGE_CP_4U|_PAGE_CV_4U;
2665         }
2666
2667         return __pgprot(pte);
2668 }
2669
2670 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2671                           pmd_t *pmd)
2672 {
2673         unsigned long pte, flags;
2674         struct mm_struct *mm;
2675         pmd_t entry = *pmd;
2676         pgprot_t prot;
2677
2678         if (!pmd_large(entry) || !pmd_young(entry))
2679                 return;
2680
2681         pte = (pmd_val(entry) & ~PMD_HUGE_PROTBITS);
2682         pte <<= PMD_PADDR_SHIFT;
2683         pte |= _PAGE_VALID;
2684
2685         prot = pmd_pgprot(entry);
2686
2687         if (tlb_type == hypervisor)
2688                 pgprot_val(prot) |= _PAGE_SZHUGE_4V;
2689         else
2690                 pgprot_val(prot) |= _PAGE_SZHUGE_4U;
2691
2692         pte |= pgprot_val(prot);
2693
2694         mm = vma->vm_mm;
2695
2696         spin_lock_irqsave(&mm->context.lock, flags);
2697
2698         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2699                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
2700                                         addr, pte);
2701
2702         spin_unlock_irqrestore(&mm->context.lock, flags);
2703 }
2704 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2705
2706 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2707 static void context_reload(void *__data)
2708 {
2709         struct mm_struct *mm = __data;
2710
2711         if (mm == current->mm)
2712                 load_secondary_context(mm);
2713 }
2714
2715 void hugetlb_setup(struct pt_regs *regs)
2716 {
2717         struct mm_struct *mm = current->mm;
2718         struct tsb_config *tp;
2719
2720         if (in_atomic() || !mm) {
2721                 const struct exception_table_entry *entry;
2722
2723                 entry = search_exception_tables(regs->tpc);
2724                 if (entry) {
2725                         regs->tpc = entry->fixup;
2726                         regs->tnpc = regs->tpc + 4;
2727                         return;
2728                 }
2729                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2730                 die_if_kernel("HugeTSB in atomic", regs);
2731         }
2732
2733         tp = &mm->context.tsb_block[MM_TSB_HUGE];
2734         if (likely(tp->tsb == NULL))
2735                 tsb_grow(mm, MM_TSB_HUGE, 0);
2736
2737         tsb_context_switch(mm);
2738         smp_tsb_sync(mm);
2739
2740         /* On UltraSPARC-III+ and later, configure the second half of
2741          * the Data-TLB for huge pages.
2742          */
2743         if (tlb_type == cheetah_plus) {
2744                 unsigned long ctx;
2745
2746                 spin_lock(&ctx_alloc_lock);
2747                 ctx = mm->context.sparc64_ctx_val;
2748                 ctx &= ~CTX_PGSZ_MASK;
2749                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2750                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2751
2752                 if (ctx != mm->context.sparc64_ctx_val) {
2753                         /* When changing the page size fields, we
2754                          * must perform a context flush so that no
2755                          * stale entries match.  This flush must
2756                          * occur with the original context register
2757                          * settings.
2758                          */
2759                         do_flush_tlb_mm(mm);
2760
2761                         /* Reload the context register of all processors
2762                          * also executing in this address space.
2763                          */
2764                         mm->context.sparc64_ctx_val = ctx;
2765                         on_each_cpu(context_reload, mm, 0);
2766                 }
2767                 spin_unlock(&ctx_alloc_lock);
2768         }
2769 }
2770 #endif
2771
2772 #ifdef CONFIG_SMP
2773 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
2774 #else
2775 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
2776 #endif
2777
2778 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2779 {
2780         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2781                 if (start < LOW_OBP_ADDRESS) {
2782                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2783                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2784                 }
2785                 if (end > HI_OBP_ADDRESS) {
2786                         flush_tsb_kernel_range(end, HI_OBP_ADDRESS);
2787                         do_flush_tlb_kernel_range(end, HI_OBP_ADDRESS);
2788                 }
2789         } else {
2790                 flush_tsb_kernel_range(start, end);
2791                 do_flush_tlb_kernel_range(start, end);
2792         }
2793 }