Merge remote-tracking branch 'regmap/fix/cache' into regmap-linus
[firefly-linux-kernel-4.4.55.git] / arch / s390 / kernel / smp.c
1 /*
2  *  SMP related functions
3  *
4  *    Copyright IBM Corp. 1999, 2012
5  *    Author(s): Denis Joseph Barrow,
6  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
7  *               Heiko Carstens <heiko.carstens@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/vtimer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include <asm/sigp.h>
48 #include "entry.h"
49
50 enum {
51         ec_schedule = 0,
52         ec_call_function,
53         ec_call_function_single,
54         ec_stop_cpu,
55 };
56
57 enum {
58         CPU_STATE_STANDBY,
59         CPU_STATE_CONFIGURED,
60 };
61
62 struct pcpu {
63         struct cpu cpu;
64         struct _lowcore *lowcore;       /* lowcore page(s) for the cpu */
65         unsigned long async_stack;      /* async stack for the cpu */
66         unsigned long panic_stack;      /* panic stack for the cpu */
67         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
68         int state;                      /* physical cpu state */
69         int polarization;               /* physical polarization */
70         u16 address;                    /* physical cpu address */
71 };
72
73 static u8 boot_cpu_type;
74 static u16 boot_cpu_address;
75 static struct pcpu pcpu_devices[NR_CPUS];
76
77 /*
78  * The smp_cpu_state_mutex must be held when changing the state or polarization
79  * member of a pcpu data structure within the pcpu_devices arreay.
80  */
81 DEFINE_MUTEX(smp_cpu_state_mutex);
82
83 /*
84  * Signal processor helper functions.
85  */
86 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
87 {
88         register unsigned int reg1 asm ("1") = parm;
89         int cc;
90
91         asm volatile(
92                 "       sigp    %1,%2,0(%3)\n"
93                 "       ipm     %0\n"
94                 "       srl     %0,28\n"
95                 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
96         if (status && cc == 1)
97                 *status = reg1;
98         return cc;
99 }
100
101 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
102 {
103         int cc;
104
105         while (1) {
106                 cc = __pcpu_sigp(addr, order, parm, NULL);
107                 if (cc != SIGP_CC_BUSY)
108                         return cc;
109                 cpu_relax();
110         }
111 }
112
113 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
114 {
115         int cc, retry;
116
117         for (retry = 0; ; retry++) {
118                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
119                 if (cc != SIGP_CC_BUSY)
120                         break;
121                 if (retry >= 3)
122                         udelay(10);
123         }
124         return cc;
125 }
126
127 static inline int pcpu_stopped(struct pcpu *pcpu)
128 {
129         u32 uninitialized_var(status);
130
131         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
132                         0, &status) != SIGP_CC_STATUS_STORED)
133                 return 0;
134         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
135 }
136
137 static inline int pcpu_running(struct pcpu *pcpu)
138 {
139         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
140                         0, NULL) != SIGP_CC_STATUS_STORED)
141                 return 1;
142         /* Status stored condition code is equivalent to cpu not running. */
143         return 0;
144 }
145
146 /*
147  * Find struct pcpu by cpu address.
148  */
149 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
150 {
151         int cpu;
152
153         for_each_cpu(cpu, mask)
154                 if (pcpu_devices[cpu].address == address)
155                         return pcpu_devices + cpu;
156         return NULL;
157 }
158
159 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
160 {
161         int order;
162
163         set_bit(ec_bit, &pcpu->ec_mask);
164         order = pcpu_running(pcpu) ?
165                 SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
166         pcpu_sigp_retry(pcpu, order, 0);
167 }
168
169 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
170 {
171         struct _lowcore *lc;
172
173         if (pcpu != &pcpu_devices[0]) {
174                 pcpu->lowcore = (struct _lowcore *)
175                         __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
176                 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
177                 pcpu->panic_stack = __get_free_page(GFP_KERNEL);
178                 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
179                         goto out;
180         }
181         lc = pcpu->lowcore;
182         memcpy(lc, &S390_lowcore, 512);
183         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
184         lc->async_stack = pcpu->async_stack + ASYNC_SIZE
185                 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
186         lc->panic_stack = pcpu->panic_stack + PAGE_SIZE
187                 - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
188         lc->cpu_nr = cpu;
189 #ifndef CONFIG_64BIT
190         if (MACHINE_HAS_IEEE) {
191                 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
192                 if (!lc->extended_save_area_addr)
193                         goto out;
194         }
195 #else
196         if (vdso_alloc_per_cpu(lc))
197                 goto out;
198 #endif
199         lowcore_ptr[cpu] = lc;
200         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
201         return 0;
202 out:
203         if (pcpu != &pcpu_devices[0]) {
204                 free_page(pcpu->panic_stack);
205                 free_pages(pcpu->async_stack, ASYNC_ORDER);
206                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
207         }
208         return -ENOMEM;
209 }
210
211 #ifdef CONFIG_HOTPLUG_CPU
212
213 static void pcpu_free_lowcore(struct pcpu *pcpu)
214 {
215         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
216         lowcore_ptr[pcpu - pcpu_devices] = NULL;
217 #ifndef CONFIG_64BIT
218         if (MACHINE_HAS_IEEE) {
219                 struct _lowcore *lc = pcpu->lowcore;
220
221                 free_page((unsigned long) lc->extended_save_area_addr);
222                 lc->extended_save_area_addr = 0;
223         }
224 #else
225         vdso_free_per_cpu(pcpu->lowcore);
226 #endif
227         if (pcpu != &pcpu_devices[0]) {
228                 free_page(pcpu->panic_stack);
229                 free_pages(pcpu->async_stack, ASYNC_ORDER);
230                 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
231         }
232 }
233
234 #endif /* CONFIG_HOTPLUG_CPU */
235
236 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
237 {
238         struct _lowcore *lc = pcpu->lowcore;
239
240         atomic_inc(&init_mm.context.attach_count);
241         lc->cpu_nr = cpu;
242         lc->percpu_offset = __per_cpu_offset[cpu];
243         lc->kernel_asce = S390_lowcore.kernel_asce;
244         lc->machine_flags = S390_lowcore.machine_flags;
245         lc->ftrace_func = S390_lowcore.ftrace_func;
246         lc->user_timer = lc->system_timer = lc->steal_timer = 0;
247         __ctl_store(lc->cregs_save_area, 0, 15);
248         save_access_regs((unsigned int *) lc->access_regs_save_area);
249         memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
250                MAX_FACILITY_BIT/8);
251 }
252
253 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
254 {
255         struct _lowcore *lc = pcpu->lowcore;
256         struct thread_info *ti = task_thread_info(tsk);
257
258         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
259                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
260         lc->thread_info = (unsigned long) task_thread_info(tsk);
261         lc->current_task = (unsigned long) tsk;
262         lc->user_timer = ti->user_timer;
263         lc->system_timer = ti->system_timer;
264         lc->steal_timer = 0;
265 }
266
267 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
268 {
269         struct _lowcore *lc = pcpu->lowcore;
270
271         lc->restart_stack = lc->kernel_stack;
272         lc->restart_fn = (unsigned long) func;
273         lc->restart_data = (unsigned long) data;
274         lc->restart_source = -1UL;
275         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
276 }
277
278 /*
279  * Call function via PSW restart on pcpu and stop the current cpu.
280  */
281 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
282                           void *data, unsigned long stack)
283 {
284         struct _lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
285         unsigned long source_cpu = stap();
286
287         __load_psw_mask(psw_kernel_bits);
288         if (pcpu->address == source_cpu)
289                 func(data);     /* should not return */
290         /* Stop target cpu (if func returns this stops the current cpu). */
291         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
292         /* Restart func on the target cpu and stop the current cpu. */
293         mem_assign_absolute(lc->restart_stack, stack);
294         mem_assign_absolute(lc->restart_fn, (unsigned long) func);
295         mem_assign_absolute(lc->restart_data, (unsigned long) data);
296         mem_assign_absolute(lc->restart_source, source_cpu);
297         asm volatile(
298                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
299                 "       brc     2,0b    # busy, try again\n"
300                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
301                 "       brc     2,1b    # busy, try again\n"
302                 : : "d" (pcpu->address), "d" (source_cpu),
303                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
304                 : "0", "1", "cc");
305         for (;;) ;
306 }
307
308 /*
309  * Call function on an online CPU.
310  */
311 void smp_call_online_cpu(void (*func)(void *), void *data)
312 {
313         struct pcpu *pcpu;
314
315         /* Use the current cpu if it is online. */
316         pcpu = pcpu_find_address(cpu_online_mask, stap());
317         if (!pcpu)
318                 /* Use the first online cpu. */
319                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
320         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
321 }
322
323 /*
324  * Call function on the ipl CPU.
325  */
326 void smp_call_ipl_cpu(void (*func)(void *), void *data)
327 {
328         pcpu_delegate(&pcpu_devices[0], func, data,
329                       pcpu_devices->panic_stack + PAGE_SIZE);
330 }
331
332 int smp_find_processor_id(u16 address)
333 {
334         int cpu;
335
336         for_each_present_cpu(cpu)
337                 if (pcpu_devices[cpu].address == address)
338                         return cpu;
339         return -1;
340 }
341
342 int smp_vcpu_scheduled(int cpu)
343 {
344         return pcpu_running(pcpu_devices + cpu);
345 }
346
347 void smp_yield(void)
348 {
349         if (MACHINE_HAS_DIAG44)
350                 asm volatile("diag 0,0,0x44");
351 }
352
353 void smp_yield_cpu(int cpu)
354 {
355         if (MACHINE_HAS_DIAG9C)
356                 asm volatile("diag %0,0,0x9c"
357                              : : "d" (pcpu_devices[cpu].address));
358         else if (MACHINE_HAS_DIAG44)
359                 asm volatile("diag 0,0,0x44");
360 }
361
362 /*
363  * Send cpus emergency shutdown signal. This gives the cpus the
364  * opportunity to complete outstanding interrupts.
365  */
366 void smp_emergency_stop(cpumask_t *cpumask)
367 {
368         u64 end;
369         int cpu;
370
371         end = get_tod_clock() + (1000000UL << 12);
372         for_each_cpu(cpu, cpumask) {
373                 struct pcpu *pcpu = pcpu_devices + cpu;
374                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
375                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
376                                    0, NULL) == SIGP_CC_BUSY &&
377                        get_tod_clock() < end)
378                         cpu_relax();
379         }
380         while (get_tod_clock() < end) {
381                 for_each_cpu(cpu, cpumask)
382                         if (pcpu_stopped(pcpu_devices + cpu))
383                                 cpumask_clear_cpu(cpu, cpumask);
384                 if (cpumask_empty(cpumask))
385                         break;
386                 cpu_relax();
387         }
388 }
389
390 /*
391  * Stop all cpus but the current one.
392  */
393 void smp_send_stop(void)
394 {
395         cpumask_t cpumask;
396         int cpu;
397
398         /* Disable all interrupts/machine checks */
399         __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
400         trace_hardirqs_off();
401
402         debug_set_critical();
403         cpumask_copy(&cpumask, cpu_online_mask);
404         cpumask_clear_cpu(smp_processor_id(), &cpumask);
405
406         if (oops_in_progress)
407                 smp_emergency_stop(&cpumask);
408
409         /* stop all processors */
410         for_each_cpu(cpu, &cpumask) {
411                 struct pcpu *pcpu = pcpu_devices + cpu;
412                 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
413                 while (!pcpu_stopped(pcpu))
414                         cpu_relax();
415         }
416 }
417
418 /*
419  * Stop the current cpu.
420  */
421 void smp_stop_cpu(void)
422 {
423         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
424         for (;;) ;
425 }
426
427 /*
428  * This is the main routine where commands issued by other
429  * cpus are handled.
430  */
431 static void do_ext_call_interrupt(struct ext_code ext_code,
432                                   unsigned int param32, unsigned long param64)
433 {
434         unsigned long bits;
435         int cpu;
436
437         cpu = smp_processor_id();
438         if (ext_code.code == 0x1202)
439                 inc_irq_stat(IRQEXT_EXC);
440         else
441                 inc_irq_stat(IRQEXT_EMS);
442         /*
443          * handle bit signal external calls
444          */
445         bits = xchg(&pcpu_devices[cpu].ec_mask, 0);
446
447         if (test_bit(ec_stop_cpu, &bits))
448                 smp_stop_cpu();
449
450         if (test_bit(ec_schedule, &bits))
451                 scheduler_ipi();
452
453         if (test_bit(ec_call_function, &bits))
454                 generic_smp_call_function_interrupt();
455
456         if (test_bit(ec_call_function_single, &bits))
457                 generic_smp_call_function_single_interrupt();
458
459 }
460
461 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
462 {
463         int cpu;
464
465         for_each_cpu(cpu, mask)
466                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
467 }
468
469 void arch_send_call_function_single_ipi(int cpu)
470 {
471         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
472 }
473
474 #ifndef CONFIG_64BIT
475 /*
476  * this function sends a 'purge tlb' signal to another CPU.
477  */
478 static void smp_ptlb_callback(void *info)
479 {
480         __tlb_flush_local();
481 }
482
483 void smp_ptlb_all(void)
484 {
485         on_each_cpu(smp_ptlb_callback, NULL, 1);
486 }
487 EXPORT_SYMBOL(smp_ptlb_all);
488 #endif /* ! CONFIG_64BIT */
489
490 /*
491  * this function sends a 'reschedule' IPI to another CPU.
492  * it goes straight through and wastes no time serializing
493  * anything. Worst case is that we lose a reschedule ...
494  */
495 void smp_send_reschedule(int cpu)
496 {
497         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
498 }
499
500 /*
501  * parameter area for the set/clear control bit callbacks
502  */
503 struct ec_creg_mask_parms {
504         unsigned long orval;
505         unsigned long andval;
506         int cr;
507 };
508
509 /*
510  * callback for setting/clearing control bits
511  */
512 static void smp_ctl_bit_callback(void *info)
513 {
514         struct ec_creg_mask_parms *pp = info;
515         unsigned long cregs[16];
516
517         __ctl_store(cregs, 0, 15);
518         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
519         __ctl_load(cregs, 0, 15);
520 }
521
522 /*
523  * Set a bit in a control register of all cpus
524  */
525 void smp_ctl_set_bit(int cr, int bit)
526 {
527         struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
528
529         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
530 }
531 EXPORT_SYMBOL(smp_ctl_set_bit);
532
533 /*
534  * Clear a bit in a control register of all cpus
535  */
536 void smp_ctl_clear_bit(int cr, int bit)
537 {
538         struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
539
540         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
541 }
542 EXPORT_SYMBOL(smp_ctl_clear_bit);
543
544 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
545
546 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
547 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
548
549 static void __init smp_get_save_area(int cpu, u16 address)
550 {
551         void *lc = pcpu_devices[0].lowcore;
552         struct save_area *save_area;
553
554         if (is_kdump_kernel())
555                 return;
556         if (!OLDMEM_BASE && (address == boot_cpu_address ||
557                              ipl_info.type != IPL_TYPE_FCP_DUMP))
558                 return;
559         if (cpu >= NR_CPUS) {
560                 pr_warning("CPU %i exceeds the maximum %i and is excluded "
561                            "from the dump\n", cpu, NR_CPUS - 1);
562                 return;
563         }
564         save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
565         if (!save_area)
566                 panic("could not allocate memory for save area\n");
567         zfcpdump_save_areas[cpu] = save_area;
568 #ifdef CONFIG_CRASH_DUMP
569         if (address == boot_cpu_address) {
570                 /* Copy the registers of the boot cpu. */
571                 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
572                                  SAVE_AREA_BASE - PAGE_SIZE, 0);
573                 return;
574         }
575 #endif
576         /* Get the registers of a non-boot cpu. */
577         __pcpu_sigp_relax(address, SIGP_STOP_AND_STORE_STATUS, 0, NULL);
578         memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
579 }
580
581 int smp_store_status(int cpu)
582 {
583         struct pcpu *pcpu;
584
585         pcpu = pcpu_devices + cpu;
586         if (__pcpu_sigp_relax(pcpu->address, SIGP_STOP_AND_STORE_STATUS,
587                               0, NULL) != SIGP_CC_ORDER_CODE_ACCEPTED)
588                 return -EIO;
589         return 0;
590 }
591
592 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
593
594 static inline void smp_get_save_area(int cpu, u16 address) { }
595
596 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
597
598 void smp_cpu_set_polarization(int cpu, int val)
599 {
600         pcpu_devices[cpu].polarization = val;
601 }
602
603 int smp_cpu_get_polarization(int cpu)
604 {
605         return pcpu_devices[cpu].polarization;
606 }
607
608 static struct sclp_cpu_info *smp_get_cpu_info(void)
609 {
610         static int use_sigp_detection;
611         struct sclp_cpu_info *info;
612         int address;
613
614         info = kzalloc(sizeof(*info), GFP_KERNEL);
615         if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
616                 use_sigp_detection = 1;
617                 for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
618                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0, NULL) ==
619                             SIGP_CC_NOT_OPERATIONAL)
620                                 continue;
621                         info->cpu[info->configured].address = address;
622                         info->configured++;
623                 }
624                 info->combined = info->configured;
625         }
626         return info;
627 }
628
629 static int __cpuinit smp_add_present_cpu(int cpu);
630
631 static int __cpuinit __smp_rescan_cpus(struct sclp_cpu_info *info,
632                                        int sysfs_add)
633 {
634         struct pcpu *pcpu;
635         cpumask_t avail;
636         int cpu, nr, i;
637
638         nr = 0;
639         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
640         cpu = cpumask_first(&avail);
641         for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
642                 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
643                         continue;
644                 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
645                         continue;
646                 pcpu = pcpu_devices + cpu;
647                 pcpu->address = info->cpu[i].address;
648                 pcpu->state = (i >= info->configured) ?
649                         CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
650                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
651                 set_cpu_present(cpu, true);
652                 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
653                         set_cpu_present(cpu, false);
654                 else
655                         nr++;
656                 cpu = cpumask_next(cpu, &avail);
657         }
658         return nr;
659 }
660
661 static void __init smp_detect_cpus(void)
662 {
663         unsigned int cpu, c_cpus, s_cpus;
664         struct sclp_cpu_info *info;
665
666         info = smp_get_cpu_info();
667         if (!info)
668                 panic("smp_detect_cpus failed to allocate memory\n");
669         if (info->has_cpu_type) {
670                 for (cpu = 0; cpu < info->combined; cpu++) {
671                         if (info->cpu[cpu].address != boot_cpu_address)
672                                 continue;
673                         /* The boot cpu dictates the cpu type. */
674                         boot_cpu_type = info->cpu[cpu].type;
675                         break;
676                 }
677         }
678         c_cpus = s_cpus = 0;
679         for (cpu = 0; cpu < info->combined; cpu++) {
680                 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
681                         continue;
682                 if (cpu < info->configured) {
683                         smp_get_save_area(c_cpus, info->cpu[cpu].address);
684                         c_cpus++;
685                 } else
686                         s_cpus++;
687         }
688         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
689         get_online_cpus();
690         __smp_rescan_cpus(info, 0);
691         put_online_cpus();
692         kfree(info);
693 }
694
695 /*
696  *      Activate a secondary processor.
697  */
698 static void __cpuinit smp_start_secondary(void *cpuvoid)
699 {
700         S390_lowcore.last_update_clock = get_tod_clock();
701         S390_lowcore.restart_stack = (unsigned long) restart_stack;
702         S390_lowcore.restart_fn = (unsigned long) do_restart;
703         S390_lowcore.restart_data = 0;
704         S390_lowcore.restart_source = -1UL;
705         restore_access_regs(S390_lowcore.access_regs_save_area);
706         __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
707         __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
708         cpu_init();
709         preempt_disable();
710         init_cpu_timer();
711         init_cpu_vtimer();
712         pfault_init();
713         notify_cpu_starting(smp_processor_id());
714         set_cpu_online(smp_processor_id(), true);
715         inc_irq_stat(CPU_RST);
716         local_irq_enable();
717         cpu_startup_entry(CPUHP_ONLINE);
718 }
719
720 /* Upping and downing of CPUs */
721 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
722 {
723         struct pcpu *pcpu;
724         int rc;
725
726         pcpu = pcpu_devices + cpu;
727         if (pcpu->state != CPU_STATE_CONFIGURED)
728                 return -EIO;
729         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
730             SIGP_CC_ORDER_CODE_ACCEPTED)
731                 return -EIO;
732
733         rc = pcpu_alloc_lowcore(pcpu, cpu);
734         if (rc)
735                 return rc;
736         pcpu_prepare_secondary(pcpu, cpu);
737         pcpu_attach_task(pcpu, tidle);
738         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
739         while (!cpu_online(cpu))
740                 cpu_relax();
741         return 0;
742 }
743
744 static int __init setup_possible_cpus(char *s)
745 {
746         int max, cpu;
747
748         if (kstrtoint(s, 0, &max) < 0)
749                 return 0;
750         init_cpu_possible(cpumask_of(0));
751         for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
752                 set_cpu_possible(cpu, true);
753         return 0;
754 }
755 early_param("possible_cpus", setup_possible_cpus);
756
757 #ifdef CONFIG_HOTPLUG_CPU
758
759 int __cpu_disable(void)
760 {
761         unsigned long cregs[16];
762
763         set_cpu_online(smp_processor_id(), false);
764         /* Disable pseudo page faults on this cpu. */
765         pfault_fini();
766         /* Disable interrupt sources via control register. */
767         __ctl_store(cregs, 0, 15);
768         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
769         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
770         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
771         __ctl_load(cregs, 0, 15);
772         return 0;
773 }
774
775 void __cpu_die(unsigned int cpu)
776 {
777         struct pcpu *pcpu;
778
779         /* Wait until target cpu is down */
780         pcpu = pcpu_devices + cpu;
781         while (!pcpu_stopped(pcpu))
782                 cpu_relax();
783         pcpu_free_lowcore(pcpu);
784         atomic_dec(&init_mm.context.attach_count);
785 }
786
787 void __noreturn cpu_die(void)
788 {
789         idle_task_exit();
790         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
791         for (;;) ;
792 }
793
794 #endif /* CONFIG_HOTPLUG_CPU */
795
796 void __init smp_prepare_cpus(unsigned int max_cpus)
797 {
798         /* request the 0x1201 emergency signal external interrupt */
799         if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
800                 panic("Couldn't request external interrupt 0x1201");
801         /* request the 0x1202 external call external interrupt */
802         if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
803                 panic("Couldn't request external interrupt 0x1202");
804         smp_detect_cpus();
805 }
806
807 void __init smp_prepare_boot_cpu(void)
808 {
809         struct pcpu *pcpu = pcpu_devices;
810
811         boot_cpu_address = stap();
812         pcpu->state = CPU_STATE_CONFIGURED;
813         pcpu->address = boot_cpu_address;
814         pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
815         pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE
816                 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
817         pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE
818                 + STACK_FRAME_OVERHEAD + sizeof(struct pt_regs);
819         S390_lowcore.percpu_offset = __per_cpu_offset[0];
820         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
821         set_cpu_present(0, true);
822         set_cpu_online(0, true);
823 }
824
825 void __init smp_cpus_done(unsigned int max_cpus)
826 {
827 }
828
829 void __init smp_setup_processor_id(void)
830 {
831         S390_lowcore.cpu_nr = 0;
832 }
833
834 /*
835  * the frequency of the profiling timer can be changed
836  * by writing a multiplier value into /proc/profile.
837  *
838  * usually you want to run this on all CPUs ;)
839  */
840 int setup_profiling_timer(unsigned int multiplier)
841 {
842         return 0;
843 }
844
845 #ifdef CONFIG_HOTPLUG_CPU
846 static ssize_t cpu_configure_show(struct device *dev,
847                                   struct device_attribute *attr, char *buf)
848 {
849         ssize_t count;
850
851         mutex_lock(&smp_cpu_state_mutex);
852         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
853         mutex_unlock(&smp_cpu_state_mutex);
854         return count;
855 }
856
857 static ssize_t cpu_configure_store(struct device *dev,
858                                    struct device_attribute *attr,
859                                    const char *buf, size_t count)
860 {
861         struct pcpu *pcpu;
862         int cpu, val, rc;
863         char delim;
864
865         if (sscanf(buf, "%d %c", &val, &delim) != 1)
866                 return -EINVAL;
867         if (val != 0 && val != 1)
868                 return -EINVAL;
869         get_online_cpus();
870         mutex_lock(&smp_cpu_state_mutex);
871         rc = -EBUSY;
872         /* disallow configuration changes of online cpus and cpu 0 */
873         cpu = dev->id;
874         if (cpu_online(cpu) || cpu == 0)
875                 goto out;
876         pcpu = pcpu_devices + cpu;
877         rc = 0;
878         switch (val) {
879         case 0:
880                 if (pcpu->state != CPU_STATE_CONFIGURED)
881                         break;
882                 rc = sclp_cpu_deconfigure(pcpu->address);
883                 if (rc)
884                         break;
885                 pcpu->state = CPU_STATE_STANDBY;
886                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
887                 topology_expect_change();
888                 break;
889         case 1:
890                 if (pcpu->state != CPU_STATE_STANDBY)
891                         break;
892                 rc = sclp_cpu_configure(pcpu->address);
893                 if (rc)
894                         break;
895                 pcpu->state = CPU_STATE_CONFIGURED;
896                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
897                 topology_expect_change();
898                 break;
899         default:
900                 break;
901         }
902 out:
903         mutex_unlock(&smp_cpu_state_mutex);
904         put_online_cpus();
905         return rc ? rc : count;
906 }
907 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
908 #endif /* CONFIG_HOTPLUG_CPU */
909
910 static ssize_t show_cpu_address(struct device *dev,
911                                 struct device_attribute *attr, char *buf)
912 {
913         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
914 }
915 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
916
917 static struct attribute *cpu_common_attrs[] = {
918 #ifdef CONFIG_HOTPLUG_CPU
919         &dev_attr_configure.attr,
920 #endif
921         &dev_attr_address.attr,
922         NULL,
923 };
924
925 static struct attribute_group cpu_common_attr_group = {
926         .attrs = cpu_common_attrs,
927 };
928
929 static ssize_t show_idle_count(struct device *dev,
930                                 struct device_attribute *attr, char *buf)
931 {
932         struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
933         unsigned long long idle_count;
934         unsigned int sequence;
935
936         do {
937                 sequence = ACCESS_ONCE(idle->sequence);
938                 idle_count = ACCESS_ONCE(idle->idle_count);
939                 if (ACCESS_ONCE(idle->clock_idle_enter))
940                         idle_count++;
941         } while ((sequence & 1) || (idle->sequence != sequence));
942         return sprintf(buf, "%llu\n", idle_count);
943 }
944 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
945
946 static ssize_t show_idle_time(struct device *dev,
947                                 struct device_attribute *attr, char *buf)
948 {
949         struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
950         unsigned long long now, idle_time, idle_enter, idle_exit;
951         unsigned int sequence;
952
953         do {
954                 now = get_tod_clock();
955                 sequence = ACCESS_ONCE(idle->sequence);
956                 idle_time = ACCESS_ONCE(idle->idle_time);
957                 idle_enter = ACCESS_ONCE(idle->clock_idle_enter);
958                 idle_exit = ACCESS_ONCE(idle->clock_idle_exit);
959         } while ((sequence & 1) || (idle->sequence != sequence));
960         idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
961         return sprintf(buf, "%llu\n", idle_time >> 12);
962 }
963 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
964
965 static struct attribute *cpu_online_attrs[] = {
966         &dev_attr_idle_count.attr,
967         &dev_attr_idle_time_us.attr,
968         NULL,
969 };
970
971 static struct attribute_group cpu_online_attr_group = {
972         .attrs = cpu_online_attrs,
973 };
974
975 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
976                                     unsigned long action, void *hcpu)
977 {
978         unsigned int cpu = (unsigned int)(long)hcpu;
979         struct cpu *c = &pcpu_devices[cpu].cpu;
980         struct device *s = &c->dev;
981         int err = 0;
982
983         switch (action & ~CPU_TASKS_FROZEN) {
984         case CPU_ONLINE:
985                 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
986                 break;
987         case CPU_DEAD:
988                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
989                 break;
990         }
991         return notifier_from_errno(err);
992 }
993
994 static int __cpuinit smp_add_present_cpu(int cpu)
995 {
996         struct cpu *c = &pcpu_devices[cpu].cpu;
997         struct device *s = &c->dev;
998         int rc;
999
1000         c->hotpluggable = 1;
1001         rc = register_cpu(c, cpu);
1002         if (rc)
1003                 goto out;
1004         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1005         if (rc)
1006                 goto out_cpu;
1007         if (cpu_online(cpu)) {
1008                 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1009                 if (rc)
1010                         goto out_online;
1011         }
1012         rc = topology_cpu_init(c);
1013         if (rc)
1014                 goto out_topology;
1015         return 0;
1016
1017 out_topology:
1018         if (cpu_online(cpu))
1019                 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1020 out_online:
1021         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1022 out_cpu:
1023 #ifdef CONFIG_HOTPLUG_CPU
1024         unregister_cpu(c);
1025 #endif
1026 out:
1027         return rc;
1028 }
1029
1030 #ifdef CONFIG_HOTPLUG_CPU
1031
1032 int __ref smp_rescan_cpus(void)
1033 {
1034         struct sclp_cpu_info *info;
1035         int nr;
1036
1037         info = smp_get_cpu_info();
1038         if (!info)
1039                 return -ENOMEM;
1040         get_online_cpus();
1041         mutex_lock(&smp_cpu_state_mutex);
1042         nr = __smp_rescan_cpus(info, 1);
1043         mutex_unlock(&smp_cpu_state_mutex);
1044         put_online_cpus();
1045         kfree(info);
1046         if (nr)
1047                 topology_schedule_update();
1048         return 0;
1049 }
1050
1051 static ssize_t __ref rescan_store(struct device *dev,
1052                                   struct device_attribute *attr,
1053                                   const char *buf,
1054                                   size_t count)
1055 {
1056         int rc;
1057
1058         rc = smp_rescan_cpus();
1059         return rc ? rc : count;
1060 }
1061 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1062 #endif /* CONFIG_HOTPLUG_CPU */
1063
1064 static int __init s390_smp_init(void)
1065 {
1066         int cpu, rc;
1067
1068         hotcpu_notifier(smp_cpu_notify, 0);
1069 #ifdef CONFIG_HOTPLUG_CPU
1070         rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1071         if (rc)
1072                 return rc;
1073 #endif
1074         for_each_present_cpu(cpu) {
1075                 rc = smp_add_present_cpu(cpu);
1076                 if (rc)
1077                         return rc;
1078         }
1079         return 0;
1080 }
1081 subsys_initcall(s390_smp_init);