HID: picolcd: sanity check report size in raw_event() callback
[firefly-linux-kernel-4.4.55.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/prom.h>
30 #include <asm/pci-bridge.h>
31 #include <asm/machdep.h>
32 #include <asm/msi_bitmap.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/opal.h>
35 #include <asm/iommu.h>
36 #include <asm/tce.h>
37 #include <asm/xics.h>
38 #include <asm/debug.h>
39
40 #include "powernv.h"
41 #include "pci.h"
42
43 #define define_pe_printk_level(func, kern_level)                \
44 static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...)     \
45 {                                                               \
46         struct va_format vaf;                                   \
47         va_list args;                                           \
48         char pfix[32];                                          \
49         int r;                                                  \
50                                                                 \
51         va_start(args, fmt);                                    \
52                                                                 \
53         vaf.fmt = fmt;                                          \
54         vaf.va = &args;                                         \
55                                                                 \
56         if (pe->pdev)                                           \
57                 strlcpy(pfix, dev_name(&pe->pdev->dev),         \
58                         sizeof(pfix));                          \
59         else                                                    \
60                 sprintf(pfix, "%04x:%02x     ",                 \
61                         pci_domain_nr(pe->pbus),                \
62                         pe->pbus->number);                      \
63         r = printk(kern_level "pci %s: [PE# %.3d] %pV",         \
64                    pfix, pe->pe_number, &vaf);                  \
65                                                                 \
66         va_end(args);                                           \
67                                                                 \
68         return r;                                               \
69 }                                                               \
70
71 define_pe_printk_level(pe_err, KERN_ERR);
72 define_pe_printk_level(pe_warn, KERN_WARNING);
73 define_pe_printk_level(pe_info, KERN_INFO);
74
75 /*
76  * stdcix is only supposed to be used in hypervisor real mode as per
77  * the architecture spec
78  */
79 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
80 {
81         __asm__ __volatile__("stdcix %0,0,%1"
82                 : : "r" (val), "r" (paddr) : "memory");
83 }
84
85 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
86 {
87         unsigned long pe;
88
89         do {
90                 pe = find_next_zero_bit(phb->ioda.pe_alloc,
91                                         phb->ioda.total_pe, 0);
92                 if (pe >= phb->ioda.total_pe)
93                         return IODA_INVALID_PE;
94         } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
95
96         phb->ioda.pe_array[pe].phb = phb;
97         phb->ioda.pe_array[pe].pe_number = pe;
98         return pe;
99 }
100
101 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
102 {
103         WARN_ON(phb->ioda.pe_array[pe].pdev);
104
105         memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
106         clear_bit(pe, phb->ioda.pe_alloc);
107 }
108
109 /* Currently those 2 are only used when MSIs are enabled, this will change
110  * but in the meantime, we need to protect them to avoid warnings
111  */
112 #ifdef CONFIG_PCI_MSI
113 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
114 {
115         struct pci_controller *hose = pci_bus_to_host(dev->bus);
116         struct pnv_phb *phb = hose->private_data;
117         struct pci_dn *pdn = pci_get_pdn(dev);
118
119         if (!pdn)
120                 return NULL;
121         if (pdn->pe_number == IODA_INVALID_PE)
122                 return NULL;
123         return &phb->ioda.pe_array[pdn->pe_number];
124 }
125 #endif /* CONFIG_PCI_MSI */
126
127 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
128 {
129         struct pci_dev *parent;
130         uint8_t bcomp, dcomp, fcomp;
131         long rc, rid_end, rid;
132
133         /* Bus validation ? */
134         if (pe->pbus) {
135                 int count;
136
137                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
138                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
139                 parent = pe->pbus->self;
140                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
141                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
142                 else
143                         count = 1;
144
145                 switch(count) {
146                 case  1: bcomp = OpalPciBusAll;         break;
147                 case  2: bcomp = OpalPciBus7Bits;       break;
148                 case  4: bcomp = OpalPciBus6Bits;       break;
149                 case  8: bcomp = OpalPciBus5Bits;       break;
150                 case 16: bcomp = OpalPciBus4Bits;       break;
151                 case 32: bcomp = OpalPciBus3Bits;       break;
152                 default:
153                         pr_err("%s: Number of subordinate busses %d"
154                                " unsupported\n",
155                                pci_name(pe->pbus->self), count);
156                         /* Do an exact match only */
157                         bcomp = OpalPciBusAll;
158                 }
159                 rid_end = pe->rid + (count << 8);
160         } else {
161                 parent = pe->pdev->bus->self;
162                 bcomp = OpalPciBusAll;
163                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
164                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
165                 rid_end = pe->rid + 1;
166         }
167
168         /*
169          * Associate PE in PELT. We need add the PE into the
170          * corresponding PELT-V as well. Otherwise, the error
171          * originated from the PE might contribute to other
172          * PEs.
173          */
174         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
175                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
176         if (rc) {
177                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
178                 return -ENXIO;
179         }
180
181         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
182                                 pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
183         if (rc)
184                 pe_warn(pe, "OPAL error %d adding self to PELTV\n", rc);
185         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
186                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
187
188         /* Add to all parents PELT-V */
189         while (parent) {
190                 struct pci_dn *pdn = pci_get_pdn(parent);
191                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
192                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
193                                                 pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
194                         /* XXX What to do in case of error ? */
195                 }
196                 parent = parent->bus->self;
197         }
198         /* Setup reverse map */
199         for (rid = pe->rid; rid < rid_end; rid++)
200                 phb->ioda.pe_rmap[rid] = pe->pe_number;
201
202         /* Setup one MVTs on IODA1 */
203         if (phb->type == PNV_PHB_IODA1) {
204                 pe->mve_number = pe->pe_number;
205                 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
206                                       pe->pe_number);
207                 if (rc) {
208                         pe_err(pe, "OPAL error %ld setting up MVE %d\n",
209                                rc, pe->mve_number);
210                         pe->mve_number = -1;
211                 } else {
212                         rc = opal_pci_set_mve_enable(phb->opal_id,
213                                                      pe->mve_number, OPAL_ENABLE_MVE);
214                         if (rc) {
215                                 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
216                                        rc, pe->mve_number);
217                                 pe->mve_number = -1;
218                         }
219                 }
220         } else if (phb->type == PNV_PHB_IODA2)
221                 pe->mve_number = 0;
222
223         return 0;
224 }
225
226 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
227                                        struct pnv_ioda_pe *pe)
228 {
229         struct pnv_ioda_pe *lpe;
230
231         list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
232                 if (lpe->dma_weight < pe->dma_weight) {
233                         list_add_tail(&pe->dma_link, &lpe->dma_link);
234                         return;
235                 }
236         }
237         list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
238 }
239
240 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
241 {
242         /* This is quite simplistic. The "base" weight of a device
243          * is 10. 0 means no DMA is to be accounted for it.
244          */
245
246         /* If it's a bridge, no DMA */
247         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
248                 return 0;
249
250         /* Reduce the weight of slow USB controllers */
251         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
252             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
253             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
254                 return 3;
255
256         /* Increase the weight of RAID (includes Obsidian) */
257         if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
258                 return 15;
259
260         /* Default */
261         return 10;
262 }
263
264 #if 0
265 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
266 {
267         struct pci_controller *hose = pci_bus_to_host(dev->bus);
268         struct pnv_phb *phb = hose->private_data;
269         struct pci_dn *pdn = pci_get_pdn(dev);
270         struct pnv_ioda_pe *pe;
271         int pe_num;
272
273         if (!pdn) {
274                 pr_err("%s: Device tree node not associated properly\n",
275                            pci_name(dev));
276                 return NULL;
277         }
278         if (pdn->pe_number != IODA_INVALID_PE)
279                 return NULL;
280
281         /* PE#0 has been pre-set */
282         if (dev->bus->number == 0)
283                 pe_num = 0;
284         else
285                 pe_num = pnv_ioda_alloc_pe(phb);
286         if (pe_num == IODA_INVALID_PE) {
287                 pr_warning("%s: Not enough PE# available, disabling device\n",
288                            pci_name(dev));
289                 return NULL;
290         }
291
292         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
293          * pointer in the PE data structure, both should be destroyed at the
294          * same time. However, this needs to be looked at more closely again
295          * once we actually start removing things (Hotplug, SR-IOV, ...)
296          *
297          * At some point we want to remove the PDN completely anyways
298          */
299         pe = &phb->ioda.pe_array[pe_num];
300         pci_dev_get(dev);
301         pdn->pcidev = dev;
302         pdn->pe_number = pe_num;
303         pe->pdev = dev;
304         pe->pbus = NULL;
305         pe->tce32_seg = -1;
306         pe->mve_number = -1;
307         pe->rid = dev->bus->number << 8 | pdn->devfn;
308
309         pe_info(pe, "Associated device to PE\n");
310
311         if (pnv_ioda_configure_pe(phb, pe)) {
312                 /* XXX What do we do here ? */
313                 if (pe_num)
314                         pnv_ioda_free_pe(phb, pe_num);
315                 pdn->pe_number = IODA_INVALID_PE;
316                 pe->pdev = NULL;
317                 pci_dev_put(dev);
318                 return NULL;
319         }
320
321         /* Assign a DMA weight to the device */
322         pe->dma_weight = pnv_ioda_dma_weight(dev);
323         if (pe->dma_weight != 0) {
324                 phb->ioda.dma_weight += pe->dma_weight;
325                 phb->ioda.dma_pe_count++;
326         }
327
328         /* Link the PE */
329         pnv_ioda_link_pe_by_weight(phb, pe);
330
331         return pe;
332 }
333 #endif /* Useful for SRIOV case */
334
335 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
336 {
337         struct pci_dev *dev;
338
339         list_for_each_entry(dev, &bus->devices, bus_list) {
340                 struct pci_dn *pdn = pci_get_pdn(dev);
341
342                 if (pdn == NULL) {
343                         pr_warn("%s: No device node associated with device !\n",
344                                 pci_name(dev));
345                         continue;
346                 }
347                 pdn->pcidev = dev;
348                 pdn->pe_number = pe->pe_number;
349                 pe->dma_weight += pnv_ioda_dma_weight(dev);
350                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
351                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
352         }
353 }
354
355 /*
356  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
357  * single PCI bus. Another one that contains the primary PCI bus and its
358  * subordinate PCI devices and buses. The second type of PE is normally
359  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
360  */
361 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
362 {
363         struct pci_controller *hose = pci_bus_to_host(bus);
364         struct pnv_phb *phb = hose->private_data;
365         struct pnv_ioda_pe *pe;
366         int pe_num;
367
368         pe_num = pnv_ioda_alloc_pe(phb);
369         if (pe_num == IODA_INVALID_PE) {
370                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
371                         __func__, pci_domain_nr(bus), bus->number);
372                 return;
373         }
374
375         pe = &phb->ioda.pe_array[pe_num];
376         pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
377         pe->pbus = bus;
378         pe->pdev = NULL;
379         pe->tce32_seg = -1;
380         pe->mve_number = -1;
381         pe->rid = bus->busn_res.start << 8;
382         pe->dma_weight = 0;
383
384         if (all)
385                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
386                         bus->busn_res.start, bus->busn_res.end, pe_num);
387         else
388                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
389                         bus->busn_res.start, pe_num);
390
391         if (pnv_ioda_configure_pe(phb, pe)) {
392                 /* XXX What do we do here ? */
393                 if (pe_num)
394                         pnv_ioda_free_pe(phb, pe_num);
395                 pe->pbus = NULL;
396                 return;
397         }
398
399         /* Associate it with all child devices */
400         pnv_ioda_setup_same_PE(bus, pe);
401
402         /* Put PE to the list */
403         list_add_tail(&pe->list, &phb->ioda.pe_list);
404
405         /* Account for one DMA PE if at least one DMA capable device exist
406          * below the bridge
407          */
408         if (pe->dma_weight != 0) {
409                 phb->ioda.dma_weight += pe->dma_weight;
410                 phb->ioda.dma_pe_count++;
411         }
412
413         /* Link the PE */
414         pnv_ioda_link_pe_by_weight(phb, pe);
415 }
416
417 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
418 {
419         struct pci_dev *dev;
420
421         pnv_ioda_setup_bus_PE(bus, 0);
422
423         list_for_each_entry(dev, &bus->devices, bus_list) {
424                 if (dev->subordinate) {
425                         if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
426                                 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
427                         else
428                                 pnv_ioda_setup_PEs(dev->subordinate);
429                 }
430         }
431 }
432
433 /*
434  * Configure PEs so that the downstream PCI buses and devices
435  * could have their associated PE#. Unfortunately, we didn't
436  * figure out the way to identify the PLX bridge yet. So we
437  * simply put the PCI bus and the subordinate behind the root
438  * port to PE# here. The game rule here is expected to be changed
439  * as soon as we can detected PLX bridge correctly.
440  */
441 static void pnv_pci_ioda_setup_PEs(void)
442 {
443         struct pci_controller *hose, *tmp;
444
445         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
446                 pnv_ioda_setup_PEs(hose->bus);
447         }
448 }
449
450 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
451 {
452         struct pci_dn *pdn = pci_get_pdn(pdev);
453         struct pnv_ioda_pe *pe;
454
455         /*
456          * The function can be called while the PE#
457          * hasn't been assigned. Do nothing for the
458          * case.
459          */
460         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
461                 return;
462
463         pe = &phb->ioda.pe_array[pdn->pe_number];
464         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
465         set_iommu_table_base(&pdev->dev, &pe->tce32_table);
466 }
467
468 static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
469                                      struct pci_dev *pdev, u64 dma_mask)
470 {
471         struct pci_dn *pdn = pci_get_pdn(pdev);
472         struct pnv_ioda_pe *pe;
473         uint64_t top;
474         bool bypass = false;
475
476         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
477                 return -ENODEV;;
478
479         pe = &phb->ioda.pe_array[pdn->pe_number];
480         if (pe->tce_bypass_enabled) {
481                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
482                 bypass = (dma_mask >= top);
483         }
484
485         if (bypass) {
486                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
487                 set_dma_ops(&pdev->dev, &dma_direct_ops);
488                 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
489         } else {
490                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
491                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
492                 set_iommu_table_base(&pdev->dev, &pe->tce32_table);
493         }
494         return 0;
495 }
496
497 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
498 {
499         struct pci_dev *dev;
500
501         list_for_each_entry(dev, &bus->devices, bus_list) {
502                 set_iommu_table_base_and_group(&dev->dev, &pe->tce32_table);
503                 if (dev->subordinate)
504                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
505         }
506 }
507
508 static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
509                                          struct iommu_table *tbl,
510                                          __be64 *startp, __be64 *endp, bool rm)
511 {
512         __be64 __iomem *invalidate = rm ?
513                 (__be64 __iomem *)pe->tce_inval_reg_phys :
514                 (__be64 __iomem *)tbl->it_index;
515         unsigned long start, end, inc;
516
517         start = __pa(startp);
518         end = __pa(endp);
519
520         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
521         if (tbl->it_busno) {
522                 start <<= 12;
523                 end <<= 12;
524                 inc = 128 << 12;
525                 start |= tbl->it_busno;
526                 end |= tbl->it_busno;
527         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
528                 /* p7ioc-style invalidation, 2 TCEs per write */
529                 start |= (1ull << 63);
530                 end |= (1ull << 63);
531                 inc = 16;
532         } else {
533                 /* Default (older HW) */
534                 inc = 128;
535         }
536
537         end |= inc - 1; /* round up end to be different than start */
538
539         mb(); /* Ensure above stores are visible */
540         while (start <= end) {
541                 if (rm)
542                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
543                 else
544                         __raw_writeq(cpu_to_be64(start), invalidate);
545                 start += inc;
546         }
547
548         /*
549          * The iommu layer will do another mb() for us on build()
550          * and we don't care on free()
551          */
552 }
553
554 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
555                                          struct iommu_table *tbl,
556                                          __be64 *startp, __be64 *endp, bool rm)
557 {
558         unsigned long start, end, inc;
559         __be64 __iomem *invalidate = rm ?
560                 (__be64 __iomem *)pe->tce_inval_reg_phys :
561                 (__be64 __iomem *)tbl->it_index;
562
563         /* We'll invalidate DMA address in PE scope */
564         start = 0x2ul << 60;
565         start |= (pe->pe_number & 0xFF);
566         end = start;
567
568         /* Figure out the start, end and step */
569         inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
570         start |= (inc << 12);
571         inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
572         end |= (inc << 12);
573         inc = (0x1ul << 12);
574         mb();
575
576         while (start <= end) {
577                 if (rm)
578                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
579                 else
580                         __raw_writeq(cpu_to_be64(start), invalidate);
581                 start += inc;
582         }
583 }
584
585 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
586                                  __be64 *startp, __be64 *endp, bool rm)
587 {
588         struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
589                                               tce32_table);
590         struct pnv_phb *phb = pe->phb;
591
592         if (phb->type == PNV_PHB_IODA1)
593                 pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
594         else
595                 pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
596 }
597
598 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
599                                       struct pnv_ioda_pe *pe, unsigned int base,
600                                       unsigned int segs)
601 {
602
603         struct page *tce_mem = NULL;
604         const __be64 *swinvp;
605         struct iommu_table *tbl;
606         unsigned int i;
607         int64_t rc;
608         void *addr;
609
610         /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
611 #define TCE32_TABLE_SIZE        ((0x10000000 / 0x1000) * 8)
612
613         /* XXX FIXME: Handle 64-bit only DMA devices */
614         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
615         /* XXX FIXME: Allocate multi-level tables on PHB3 */
616
617         /* We shouldn't already have a 32-bit DMA associated */
618         if (WARN_ON(pe->tce32_seg >= 0))
619                 return;
620
621         /* Grab a 32-bit TCE table */
622         pe->tce32_seg = base;
623         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
624                 (base << 28), ((base + segs) << 28) - 1);
625
626         /* XXX Currently, we allocate one big contiguous table for the
627          * TCEs. We only really need one chunk per 256M of TCE space
628          * (ie per segment) but that's an optimization for later, it
629          * requires some added smarts with our get/put_tce implementation
630          */
631         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
632                                    get_order(TCE32_TABLE_SIZE * segs));
633         if (!tce_mem) {
634                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
635                 goto fail;
636         }
637         addr = page_address(tce_mem);
638         memset(addr, 0, TCE32_TABLE_SIZE * segs);
639
640         /* Configure HW */
641         for (i = 0; i < segs; i++) {
642                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
643                                               pe->pe_number,
644                                               base + i, 1,
645                                               __pa(addr) + TCE32_TABLE_SIZE * i,
646                                               TCE32_TABLE_SIZE, 0x1000);
647                 if (rc) {
648                         pe_err(pe, " Failed to configure 32-bit TCE table,"
649                                " err %ld\n", rc);
650                         goto fail;
651                 }
652         }
653
654         /* Setup linux iommu table */
655         tbl = &pe->tce32_table;
656         pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
657                                   base << 28);
658
659         /* OPAL variant of P7IOC SW invalidated TCEs */
660         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
661         if (swinvp) {
662                 /* We need a couple more fields -- an address and a data
663                  * to or.  Since the bus is only printed out on table free
664                  * errors, and on the first pass the data will be a relative
665                  * bus number, print that out instead.
666                  */
667                 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
668                 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
669                                 8);
670                 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
671                                  TCE_PCI_SWINV_FREE   |
672                                  TCE_PCI_SWINV_PAIR);
673         }
674         iommu_init_table(tbl, phb->hose->node);
675         iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
676
677         if (pe->pdev)
678                 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
679         else
680                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
681
682         return;
683  fail:
684         /* XXX Failure: Try to fallback to 64-bit only ? */
685         if (pe->tce32_seg >= 0)
686                 pe->tce32_seg = -1;
687         if (tce_mem)
688                 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
689 }
690
691 static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
692 {
693         struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
694                                               tce32_table);
695         uint16_t window_id = (pe->pe_number << 1 ) + 1;
696         int64_t rc;
697
698         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
699         if (enable) {
700                 phys_addr_t top = memblock_end_of_DRAM();
701
702                 top = roundup_pow_of_two(top);
703                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
704                                                      pe->pe_number,
705                                                      window_id,
706                                                      pe->tce_bypass_base,
707                                                      top);
708         } else {
709                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
710                                                      pe->pe_number,
711                                                      window_id,
712                                                      pe->tce_bypass_base,
713                                                      0);
714
715                 /*
716                  * We might want to reset the DMA ops of all devices on
717                  * this PE. However in theory, that shouldn't be necessary
718                  * as this is used for VFIO/KVM pass-through and the device
719                  * hasn't yet been returned to its kernel driver
720                  */
721         }
722         if (rc)
723                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
724         else
725                 pe->tce_bypass_enabled = enable;
726 }
727
728 static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
729                                           struct pnv_ioda_pe *pe)
730 {
731         /* TVE #1 is selected by PCI address bit 59 */
732         pe->tce_bypass_base = 1ull << 59;
733
734         /* Install set_bypass callback for VFIO */
735         pe->tce32_table.set_bypass = pnv_pci_ioda2_set_bypass;
736
737         /* Enable bypass by default */
738         pnv_pci_ioda2_set_bypass(&pe->tce32_table, true);
739 }
740
741 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
742                                        struct pnv_ioda_pe *pe)
743 {
744         struct page *tce_mem = NULL;
745         void *addr;
746         const __be64 *swinvp;
747         struct iommu_table *tbl;
748         unsigned int tce_table_size, end;
749         int64_t rc;
750
751         /* We shouldn't already have a 32-bit DMA associated */
752         if (WARN_ON(pe->tce32_seg >= 0))
753                 return;
754
755         /* The PE will reserve all possible 32-bits space */
756         pe->tce32_seg = 0;
757         end = (1 << ilog2(phb->ioda.m32_pci_base));
758         tce_table_size = (end / 0x1000) * 8;
759         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
760                 end);
761
762         /* Allocate TCE table */
763         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
764                                    get_order(tce_table_size));
765         if (!tce_mem) {
766                 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
767                 goto fail;
768         }
769         addr = page_address(tce_mem);
770         memset(addr, 0, tce_table_size);
771
772         /*
773          * Map TCE table through TVT. The TVE index is the PE number
774          * shifted by 1 bit for 32-bits DMA space.
775          */
776         rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
777                                         pe->pe_number << 1, 1, __pa(addr),
778                                         tce_table_size, 0x1000);
779         if (rc) {
780                 pe_err(pe, "Failed to configure 32-bit TCE table,"
781                        " err %ld\n", rc);
782                 goto fail;
783         }
784
785         /* Setup linux iommu table */
786         tbl = &pe->tce32_table;
787         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0);
788
789         /* OPAL variant of PHB3 invalidated TCEs */
790         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
791         if (swinvp) {
792                 /* We need a couple more fields -- an address and a data
793                  * to or.  Since the bus is only printed out on table free
794                  * errors, and on the first pass the data will be a relative
795                  * bus number, print that out instead.
796                  */
797                 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
798                 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
799                                 8);
800                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
801         }
802         iommu_init_table(tbl, phb->hose->node);
803         iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
804
805         if (pe->pdev)
806                 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
807         else
808                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
809
810         /* Also create a bypass window */
811         pnv_pci_ioda2_setup_bypass_pe(phb, pe);
812         return;
813 fail:
814         if (pe->tce32_seg >= 0)
815                 pe->tce32_seg = -1;
816         if (tce_mem)
817                 __free_pages(tce_mem, get_order(tce_table_size));
818 }
819
820 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
821 {
822         struct pci_controller *hose = phb->hose;
823         unsigned int residual, remaining, segs, tw, base;
824         struct pnv_ioda_pe *pe;
825
826         /* If we have more PE# than segments available, hand out one
827          * per PE until we run out and let the rest fail. If not,
828          * then we assign at least one segment per PE, plus more based
829          * on the amount of devices under that PE
830          */
831         if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
832                 residual = 0;
833         else
834                 residual = phb->ioda.tce32_count -
835                         phb->ioda.dma_pe_count;
836
837         pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
838                 hose->global_number, phb->ioda.tce32_count);
839         pr_info("PCI: %d PE# for a total weight of %d\n",
840                 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
841
842         /* Walk our PE list and configure their DMA segments, hand them
843          * out one base segment plus any residual segments based on
844          * weight
845          */
846         remaining = phb->ioda.tce32_count;
847         tw = phb->ioda.dma_weight;
848         base = 0;
849         list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
850                 if (!pe->dma_weight)
851                         continue;
852                 if (!remaining) {
853                         pe_warn(pe, "No DMA32 resources available\n");
854                         continue;
855                 }
856                 segs = 1;
857                 if (residual) {
858                         segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
859                         if (segs > remaining)
860                                 segs = remaining;
861                 }
862
863                 /*
864                  * For IODA2 compliant PHB3, we needn't care about the weight.
865                  * The all available 32-bits DMA space will be assigned to
866                  * the specific PE.
867                  */
868                 if (phb->type == PNV_PHB_IODA1) {
869                         pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
870                                 pe->dma_weight, segs);
871                         pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
872                 } else {
873                         pe_info(pe, "Assign DMA32 space\n");
874                         segs = 0;
875                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
876                 }
877
878                 remaining -= segs;
879                 base += segs;
880         }
881 }
882
883 #ifdef CONFIG_PCI_MSI
884 static void pnv_ioda2_msi_eoi(struct irq_data *d)
885 {
886         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
887         struct irq_chip *chip = irq_data_get_irq_chip(d);
888         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
889                                            ioda.irq_chip);
890         int64_t rc;
891
892         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
893         WARN_ON_ONCE(rc);
894
895         icp_native_eoi(d);
896 }
897
898 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
899                                   unsigned int hwirq, unsigned int virq,
900                                   unsigned int is_64, struct msi_msg *msg)
901 {
902         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
903         struct pci_dn *pdn = pci_get_pdn(dev);
904         struct irq_data *idata;
905         struct irq_chip *ichip;
906         unsigned int xive_num = hwirq - phb->msi_base;
907         __be32 data;
908         int rc;
909
910         /* No PE assigned ? bail out ... no MSI for you ! */
911         if (pe == NULL)
912                 return -ENXIO;
913
914         /* Check if we have an MVE */
915         if (pe->mve_number < 0)
916                 return -ENXIO;
917
918         /* Force 32-bit MSI on some broken devices */
919         if (pdn && pdn->force_32bit_msi)
920                 is_64 = 0;
921
922         /* Assign XIVE to PE */
923         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
924         if (rc) {
925                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
926                         pci_name(dev), rc, xive_num);
927                 return -EIO;
928         }
929
930         if (is_64) {
931                 __be64 addr64;
932
933                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
934                                      &addr64, &data);
935                 if (rc) {
936                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
937                                 pci_name(dev), rc);
938                         return -EIO;
939                 }
940                 msg->address_hi = be64_to_cpu(addr64) >> 32;
941                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
942         } else {
943                 __be32 addr32;
944
945                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
946                                      &addr32, &data);
947                 if (rc) {
948                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
949                                 pci_name(dev), rc);
950                         return -EIO;
951                 }
952                 msg->address_hi = 0;
953                 msg->address_lo = be32_to_cpu(addr32);
954         }
955         msg->data = be32_to_cpu(data);
956
957         /*
958          * Change the IRQ chip for the MSI interrupts on PHB3.
959          * The corresponding IRQ chip should be populated for
960          * the first time.
961          */
962         if (phb->type == PNV_PHB_IODA2) {
963                 if (!phb->ioda.irq_chip_init) {
964                         idata = irq_get_irq_data(virq);
965                         ichip = irq_data_get_irq_chip(idata);
966                         phb->ioda.irq_chip_init = 1;
967                         phb->ioda.irq_chip = *ichip;
968                         phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
969                 }
970
971                 irq_set_chip(virq, &phb->ioda.irq_chip);
972         }
973
974         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
975                  " address=%x_%08x data=%x PE# %d\n",
976                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
977                  msg->address_hi, msg->address_lo, data, pe->pe_number);
978
979         return 0;
980 }
981
982 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
983 {
984         unsigned int count;
985         const __be32 *prop = of_get_property(phb->hose->dn,
986                                              "ibm,opal-msi-ranges", NULL);
987         if (!prop) {
988                 /* BML Fallback */
989                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
990         }
991         if (!prop)
992                 return;
993
994         phb->msi_base = be32_to_cpup(prop);
995         count = be32_to_cpup(prop + 1);
996         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
997                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
998                        phb->hose->global_number);
999                 return;
1000         }
1001
1002         phb->msi_setup = pnv_pci_ioda_msi_setup;
1003         phb->msi32_support = 1;
1004         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1005                 count, phb->msi_base);
1006 }
1007 #else
1008 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
1009 #endif /* CONFIG_PCI_MSI */
1010
1011 /*
1012  * This function is supposed to be called on basis of PE from top
1013  * to bottom style. So the the I/O or MMIO segment assigned to
1014  * parent PE could be overrided by its child PEs if necessary.
1015  */
1016 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
1017                                   struct pnv_ioda_pe *pe)
1018 {
1019         struct pnv_phb *phb = hose->private_data;
1020         struct pci_bus_region region;
1021         struct resource *res;
1022         int i, index;
1023         int rc;
1024
1025         /*
1026          * NOTE: We only care PCI bus based PE for now. For PCI
1027          * device based PE, for example SRIOV sensitive VF should
1028          * be figured out later.
1029          */
1030         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
1031
1032         pci_bus_for_each_resource(pe->pbus, res, i) {
1033                 if (!res || !res->flags ||
1034                     res->start > res->end)
1035                         continue;
1036
1037                 if (res->flags & IORESOURCE_IO) {
1038                         region.start = res->start - phb->ioda.io_pci_base;
1039                         region.end   = res->end - phb->ioda.io_pci_base;
1040                         index = region.start / phb->ioda.io_segsize;
1041
1042                         while (index < phb->ioda.total_pe &&
1043                                region.start <= region.end) {
1044                                 phb->ioda.io_segmap[index] = pe->pe_number;
1045                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1046                                         pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1047                                 if (rc != OPAL_SUCCESS) {
1048                                         pr_err("%s: OPAL error %d when mapping IO "
1049                                                "segment #%d to PE#%d\n",
1050                                                __func__, rc, index, pe->pe_number);
1051                                         break;
1052                                 }
1053
1054                                 region.start += phb->ioda.io_segsize;
1055                                 index++;
1056                         }
1057                 } else if (res->flags & IORESOURCE_MEM) {
1058                         /* WARNING: Assumes M32 is mem region 0 in PHB. We need to
1059                          * harden that algorithm when we start supporting M64
1060                          */
1061                         region.start = res->start -
1062                                        hose->mem_offset[0] -
1063                                        phb->ioda.m32_pci_base;
1064                         region.end   = res->end -
1065                                        hose->mem_offset[0] -
1066                                        phb->ioda.m32_pci_base;
1067                         index = region.start / phb->ioda.m32_segsize;
1068
1069                         while (index < phb->ioda.total_pe &&
1070                                region.start <= region.end) {
1071                                 phb->ioda.m32_segmap[index] = pe->pe_number;
1072                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1073                                         pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1074                                 if (rc != OPAL_SUCCESS) {
1075                                         pr_err("%s: OPAL error %d when mapping M32 "
1076                                                "segment#%d to PE#%d",
1077                                                __func__, rc, index, pe->pe_number);
1078                                         break;
1079                                 }
1080
1081                                 region.start += phb->ioda.m32_segsize;
1082                                 index++;
1083                         }
1084                 }
1085         }
1086 }
1087
1088 static void pnv_pci_ioda_setup_seg(void)
1089 {
1090         struct pci_controller *tmp, *hose;
1091         struct pnv_phb *phb;
1092         struct pnv_ioda_pe *pe;
1093
1094         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1095                 phb = hose->private_data;
1096                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1097                         pnv_ioda_setup_pe_seg(hose, pe);
1098                 }
1099         }
1100 }
1101
1102 static void pnv_pci_ioda_setup_DMA(void)
1103 {
1104         struct pci_controller *hose, *tmp;
1105         struct pnv_phb *phb;
1106
1107         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1108                 pnv_ioda_setup_dma(hose->private_data);
1109
1110                 /* Mark the PHB initialization done */
1111                 phb = hose->private_data;
1112                 phb->initialized = 1;
1113         }
1114 }
1115
1116 static void pnv_pci_ioda_create_dbgfs(void)
1117 {
1118 #ifdef CONFIG_DEBUG_FS
1119         struct pci_controller *hose, *tmp;
1120         struct pnv_phb *phb;
1121         char name[16];
1122
1123         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1124                 phb = hose->private_data;
1125
1126                 sprintf(name, "PCI%04x", hose->global_number);
1127                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
1128                 if (!phb->dbgfs)
1129                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
1130                                 __func__, hose->global_number);
1131         }
1132 #endif /* CONFIG_DEBUG_FS */
1133 }
1134
1135 static void pnv_pci_ioda_fixup(void)
1136 {
1137         pnv_pci_ioda_setup_PEs();
1138         pnv_pci_ioda_setup_seg();
1139         pnv_pci_ioda_setup_DMA();
1140
1141         pnv_pci_ioda_create_dbgfs();
1142
1143 #ifdef CONFIG_EEH
1144         eeh_probe_mode_set(EEH_PROBE_MODE_DEV);
1145         eeh_addr_cache_build();
1146         eeh_init();
1147 #endif
1148 }
1149
1150 /*
1151  * Returns the alignment for I/O or memory windows for P2P
1152  * bridges. That actually depends on how PEs are segmented.
1153  * For now, we return I/O or M32 segment size for PE sensitive
1154  * P2P bridges. Otherwise, the default values (4KiB for I/O,
1155  * 1MiB for memory) will be returned.
1156  *
1157  * The current PCI bus might be put into one PE, which was
1158  * create against the parent PCI bridge. For that case, we
1159  * needn't enlarge the alignment so that we can save some
1160  * resources.
1161  */
1162 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1163                                                 unsigned long type)
1164 {
1165         struct pci_dev *bridge;
1166         struct pci_controller *hose = pci_bus_to_host(bus);
1167         struct pnv_phb *phb = hose->private_data;
1168         int num_pci_bridges = 0;
1169
1170         bridge = bus->self;
1171         while (bridge) {
1172                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1173                         num_pci_bridges++;
1174                         if (num_pci_bridges >= 2)
1175                                 return 1;
1176                 }
1177
1178                 bridge = bridge->bus->self;
1179         }
1180
1181         /* We need support prefetchable memory window later */
1182         if (type & IORESOURCE_MEM)
1183                 return phb->ioda.m32_segsize;
1184
1185         return phb->ioda.io_segsize;
1186 }
1187
1188 /* Prevent enabling devices for which we couldn't properly
1189  * assign a PE
1190  */
1191 static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1192 {
1193         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1194         struct pnv_phb *phb = hose->private_data;
1195         struct pci_dn *pdn;
1196
1197         /* The function is probably called while the PEs have
1198          * not be created yet. For example, resource reassignment
1199          * during PCI probe period. We just skip the check if
1200          * PEs isn't ready.
1201          */
1202         if (!phb->initialized)
1203                 return 0;
1204
1205         pdn = pci_get_pdn(dev);
1206         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1207                 return -EINVAL;
1208
1209         return 0;
1210 }
1211
1212 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1213                                u32 devfn)
1214 {
1215         return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1216 }
1217
1218 static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
1219 {
1220         opal_pci_reset(phb->opal_id, OPAL_PCI_IODA_TABLE_RESET,
1221                        OPAL_ASSERT_RESET);
1222 }
1223
1224 void __init pnv_pci_init_ioda_phb(struct device_node *np,
1225                                   u64 hub_id, int ioda_type)
1226 {
1227         struct pci_controller *hose;
1228         struct pnv_phb *phb;
1229         unsigned long size, m32map_off, pemap_off, iomap_off = 0;
1230         const __be64 *prop64;
1231         const __be32 *prop32;
1232         int len;
1233         u64 phb_id;
1234         void *aux;
1235         long rc;
1236
1237         pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1238
1239         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1240         if (!prop64) {
1241                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
1242                 return;
1243         }
1244         phb_id = be64_to_cpup(prop64);
1245         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
1246
1247         phb = alloc_bootmem(sizeof(struct pnv_phb));
1248         if (!phb) {
1249                 pr_err("  Out of memory !\n");
1250                 return;
1251         }
1252
1253         /* Allocate PCI controller */
1254         memset(phb, 0, sizeof(struct pnv_phb));
1255         phb->hose = hose = pcibios_alloc_controller(np);
1256         if (!phb->hose) {
1257                 pr_err("  Can't allocate PCI controller for %s\n",
1258                        np->full_name);
1259                 free_bootmem((unsigned long)phb, sizeof(struct pnv_phb));
1260                 return;
1261         }
1262
1263         spin_lock_init(&phb->lock);
1264         prop32 = of_get_property(np, "bus-range", &len);
1265         if (prop32 && len == 8) {
1266                 hose->first_busno = be32_to_cpu(prop32[0]);
1267                 hose->last_busno = be32_to_cpu(prop32[1]);
1268         } else {
1269                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
1270                 hose->first_busno = 0;
1271                 hose->last_busno = 0xff;
1272         }
1273         hose->private_data = phb;
1274         phb->hub_id = hub_id;
1275         phb->opal_id = phb_id;
1276         phb->type = ioda_type;
1277
1278         /* Detect specific models for error handling */
1279         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1280                 phb->model = PNV_PHB_MODEL_P7IOC;
1281         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
1282                 phb->model = PNV_PHB_MODEL_PHB3;
1283         else
1284                 phb->model = PNV_PHB_MODEL_UNKNOWN;
1285
1286         /* Parse 32-bit and IO ranges (if any) */
1287         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
1288
1289         /* Get registers */
1290         phb->regs = of_iomap(np, 0);
1291         if (phb->regs == NULL)
1292                 pr_err("  Failed to map registers !\n");
1293
1294         /* Initialize more IODA stuff */
1295         phb->ioda.total_pe = 1;
1296         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
1297         if (prop32)
1298                 phb->ioda.total_pe = be32_to_cpup(prop32);
1299         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
1300         if (prop32)
1301                 phb->ioda.reserved_pe = be32_to_cpup(prop32);
1302         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
1303         /* FW Has already off top 64k of M32 space (MSI space) */
1304         phb->ioda.m32_size += 0x10000;
1305
1306         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
1307         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
1308         phb->ioda.io_size = hose->pci_io_size;
1309         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
1310         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
1311
1312         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
1313         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
1314         m32map_off = size;
1315         size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
1316         if (phb->type == PNV_PHB_IODA1) {
1317                 iomap_off = size;
1318                 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
1319         }
1320         pemap_off = size;
1321         size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
1322         aux = alloc_bootmem(size);
1323         memset(aux, 0, size);
1324         phb->ioda.pe_alloc = aux;
1325         phb->ioda.m32_segmap = aux + m32map_off;
1326         if (phb->type == PNV_PHB_IODA1)
1327                 phb->ioda.io_segmap = aux + iomap_off;
1328         phb->ioda.pe_array = aux + pemap_off;
1329         set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
1330
1331         INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
1332         INIT_LIST_HEAD(&phb->ioda.pe_list);
1333
1334         /* Calculate how many 32-bit TCE segments we have */
1335         phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
1336
1337         /* Clear unusable m64 */
1338         hose->mem_resources[1].flags = 0;
1339         hose->mem_resources[1].start = 0;
1340         hose->mem_resources[1].end = 0;
1341         hose->mem_resources[2].flags = 0;
1342         hose->mem_resources[2].start = 0;
1343         hose->mem_resources[2].end = 0;
1344
1345 #if 0 /* We should really do that ... */
1346         rc = opal_pci_set_phb_mem_window(opal->phb_id,
1347                                          window_type,
1348                                          window_num,
1349                                          starting_real_address,
1350                                          starting_pci_address,
1351                                          segment_size);
1352 #endif
1353
1354         pr_info("  %d (%d) PE's M32: 0x%x [segment=0x%x]"
1355                 " IO: 0x%x [segment=0x%x]\n",
1356                 phb->ioda.total_pe,
1357                 phb->ioda.reserved_pe,
1358                 phb->ioda.m32_size, phb->ioda.m32_segsize,
1359                 phb->ioda.io_size, phb->ioda.io_segsize);
1360
1361         phb->hose->ops = &pnv_pci_ops;
1362 #ifdef CONFIG_EEH
1363         phb->eeh_ops = &ioda_eeh_ops;
1364 #endif
1365
1366         /* Setup RID -> PE mapping function */
1367         phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
1368
1369         /* Setup TCEs */
1370         phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
1371         phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
1372
1373         /* Setup shutdown function for kexec */
1374         phb->shutdown = pnv_pci_ioda_shutdown;
1375
1376         /* Setup MSI support */
1377         pnv_pci_init_ioda_msis(phb);
1378
1379         /*
1380          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
1381          * to let the PCI core do resource assignment. It's supposed
1382          * that the PCI core will do correct I/O and MMIO alignment
1383          * for the P2P bridge bars so that each PCI bus (excluding
1384          * the child P2P bridges) can form individual PE.
1385          */
1386         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
1387         ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
1388         ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
1389         ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
1390         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
1391
1392         /* Reset IODA tables to a clean state */
1393         rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
1394         if (rc)
1395                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
1396
1397         /* If we're running in kdump kerenl, the previous kerenl never
1398          * shutdown PCI devices correctly. We already got IODA table
1399          * cleaned out. So we have to issue PHB reset to stop all PCI
1400          * transactions from previous kerenl.
1401          */
1402         if (is_kdump_kernel()) {
1403                 pr_info("  Issue PHB reset ...\n");
1404                 ioda_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
1405                 ioda_eeh_phb_reset(hose, OPAL_DEASSERT_RESET);
1406         }
1407 }
1408
1409 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
1410 {
1411         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
1412 }
1413
1414 void __init pnv_pci_init_ioda_hub(struct device_node *np)
1415 {
1416         struct device_node *phbn;
1417         const __be64 *prop64;
1418         u64 hub_id;
1419
1420         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
1421
1422         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
1423         if (!prop64) {
1424                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
1425                 return;
1426         }
1427         hub_id = be64_to_cpup(prop64);
1428         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
1429
1430         /* Count child PHBs */
1431         for_each_child_of_node(np, phbn) {
1432                 /* Look for IODA1 PHBs */
1433                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
1434                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
1435         }
1436 }