s390/sclp: remove unnecessary XTABS flag
[firefly-linux-kernel-4.4.55.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/prom.h>
30 #include <asm/pci-bridge.h>
31 #include <asm/machdep.h>
32 #include <asm/msi_bitmap.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/opal.h>
35 #include <asm/iommu.h>
36 #include <asm/tce.h>
37 #include <asm/xics.h>
38 #include <asm/debug.h>
39 #include <asm/firmware.h>
40
41 #include "powernv.h"
42 #include "pci.h"
43
44 #define define_pe_printk_level(func, kern_level)                \
45 static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...)     \
46 {                                                               \
47         struct va_format vaf;                                   \
48         va_list args;                                           \
49         char pfix[32];                                          \
50         int r;                                                  \
51                                                                 \
52         va_start(args, fmt);                                    \
53                                                                 \
54         vaf.fmt = fmt;                                          \
55         vaf.va = &args;                                         \
56                                                                 \
57         if (pe->pdev)                                           \
58                 strlcpy(pfix, dev_name(&pe->pdev->dev),         \
59                         sizeof(pfix));                          \
60         else                                                    \
61                 sprintf(pfix, "%04x:%02x     ",                 \
62                         pci_domain_nr(pe->pbus),                \
63                         pe->pbus->number);                      \
64         r = printk(kern_level "pci %s: [PE# %.3d] %pV",         \
65                    pfix, pe->pe_number, &vaf);                  \
66                                                                 \
67         va_end(args);                                           \
68                                                                 \
69         return r;                                               \
70 }                                                               \
71
72 define_pe_printk_level(pe_err, KERN_ERR);
73 define_pe_printk_level(pe_warn, KERN_WARNING);
74 define_pe_printk_level(pe_info, KERN_INFO);
75
76 /*
77  * stdcix is only supposed to be used in hypervisor real mode as per
78  * the architecture spec
79  */
80 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
81 {
82         __asm__ __volatile__("stdcix %0,0,%1"
83                 : : "r" (val), "r" (paddr) : "memory");
84 }
85
86 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
87 {
88         return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
89                 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
90 }
91
92 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
93 {
94         unsigned long pe;
95
96         do {
97                 pe = find_next_zero_bit(phb->ioda.pe_alloc,
98                                         phb->ioda.total_pe, 0);
99                 if (pe >= phb->ioda.total_pe)
100                         return IODA_INVALID_PE;
101         } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
102
103         phb->ioda.pe_array[pe].phb = phb;
104         phb->ioda.pe_array[pe].pe_number = pe;
105         return pe;
106 }
107
108 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
109 {
110         WARN_ON(phb->ioda.pe_array[pe].pdev);
111
112         memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
113         clear_bit(pe, phb->ioda.pe_alloc);
114 }
115
116 /* The default M64 BAR is shared by all PEs */
117 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
118 {
119         const char *desc;
120         struct resource *r;
121         s64 rc;
122
123         /* Configure the default M64 BAR */
124         rc = opal_pci_set_phb_mem_window(phb->opal_id,
125                                          OPAL_M64_WINDOW_TYPE,
126                                          phb->ioda.m64_bar_idx,
127                                          phb->ioda.m64_base,
128                                          0, /* unused */
129                                          phb->ioda.m64_size);
130         if (rc != OPAL_SUCCESS) {
131                 desc = "configuring";
132                 goto fail;
133         }
134
135         /* Enable the default M64 BAR */
136         rc = opal_pci_phb_mmio_enable(phb->opal_id,
137                                       OPAL_M64_WINDOW_TYPE,
138                                       phb->ioda.m64_bar_idx,
139                                       OPAL_ENABLE_M64_SPLIT);
140         if (rc != OPAL_SUCCESS) {
141                 desc = "enabling";
142                 goto fail;
143         }
144
145         /* Mark the M64 BAR assigned */
146         set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
147
148         /*
149          * Strip off the segment used by the reserved PE, which is
150          * expected to be 0 or last one of PE capabicity.
151          */
152         r = &phb->hose->mem_resources[1];
153         if (phb->ioda.reserved_pe == 0)
154                 r->start += phb->ioda.m64_segsize;
155         else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
156                 r->end -= phb->ioda.m64_segsize;
157         else
158                 pr_warn("  Cannot strip M64 segment for reserved PE#%d\n",
159                         phb->ioda.reserved_pe);
160
161         return 0;
162
163 fail:
164         pr_warn("  Failure %lld %s M64 BAR#%d\n",
165                 rc, desc, phb->ioda.m64_bar_idx);
166         opal_pci_phb_mmio_enable(phb->opal_id,
167                                  OPAL_M64_WINDOW_TYPE,
168                                  phb->ioda.m64_bar_idx,
169                                  OPAL_DISABLE_M64);
170         return -EIO;
171 }
172
173 static void pnv_ioda2_alloc_m64_pe(struct pnv_phb *phb)
174 {
175         resource_size_t sgsz = phb->ioda.m64_segsize;
176         struct pci_dev *pdev;
177         struct resource *r;
178         int base, step, i;
179
180         /*
181          * Root bus always has full M64 range and root port has
182          * M64 range used in reality. So we're checking root port
183          * instead of root bus.
184          */
185         list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
186                 for (i = PCI_BRIDGE_RESOURCES;
187                      i <= PCI_BRIDGE_RESOURCE_END; i++) {
188                         r = &pdev->resource[i];
189                         if (!r->parent ||
190                             !pnv_pci_is_mem_pref_64(r->flags))
191                                 continue;
192
193                         base = (r->start - phb->ioda.m64_base) / sgsz;
194                         for (step = 0; step < resource_size(r) / sgsz; step++)
195                                 set_bit(base + step, phb->ioda.pe_alloc);
196                 }
197         }
198 }
199
200 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
201                                  struct pci_bus *bus, int all)
202 {
203         resource_size_t segsz = phb->ioda.m64_segsize;
204         struct pci_dev *pdev;
205         struct resource *r;
206         struct pnv_ioda_pe *master_pe, *pe;
207         unsigned long size, *pe_alloc;
208         bool found;
209         int start, i, j;
210
211         /* Root bus shouldn't use M64 */
212         if (pci_is_root_bus(bus))
213                 return IODA_INVALID_PE;
214
215         /* We support only one M64 window on each bus */
216         found = false;
217         pci_bus_for_each_resource(bus, r, i) {
218                 if (r && r->parent &&
219                     pnv_pci_is_mem_pref_64(r->flags)) {
220                         found = true;
221                         break;
222                 }
223         }
224
225         /* No M64 window found ? */
226         if (!found)
227                 return IODA_INVALID_PE;
228
229         /* Allocate bitmap */
230         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
231         pe_alloc = kzalloc(size, GFP_KERNEL);
232         if (!pe_alloc) {
233                 pr_warn("%s: Out of memory !\n",
234                         __func__);
235                 return IODA_INVALID_PE;
236         }
237
238         /*
239          * Figure out reserved PE numbers by the PE
240          * the its child PEs.
241          */
242         start = (r->start - phb->ioda.m64_base) / segsz;
243         for (i = 0; i < resource_size(r) / segsz; i++)
244                 set_bit(start + i, pe_alloc);
245
246         if (all)
247                 goto done;
248
249         /*
250          * If the PE doesn't cover all subordinate buses,
251          * we need subtract from reserved PEs for children.
252          */
253         list_for_each_entry(pdev, &bus->devices, bus_list) {
254                 if (!pdev->subordinate)
255                         continue;
256
257                 pci_bus_for_each_resource(pdev->subordinate, r, i) {
258                         if (!r || !r->parent ||
259                             !pnv_pci_is_mem_pref_64(r->flags))
260                                 continue;
261
262                         start = (r->start - phb->ioda.m64_base) / segsz;
263                         for (j = 0; j < resource_size(r) / segsz ; j++)
264                                 clear_bit(start + j, pe_alloc);
265                 }
266         }
267
268         /*
269          * the current bus might not own M64 window and that's all
270          * contributed by its child buses. For the case, we needn't
271          * pick M64 dependent PE#.
272          */
273         if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
274                 kfree(pe_alloc);
275                 return IODA_INVALID_PE;
276         }
277
278         /*
279          * Figure out the master PE and put all slave PEs to master
280          * PE's list to form compound PE.
281          */
282 done:
283         master_pe = NULL;
284         i = -1;
285         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
286                 phb->ioda.total_pe) {
287                 pe = &phb->ioda.pe_array[i];
288                 pe->phb = phb;
289                 pe->pe_number = i;
290
291                 if (!master_pe) {
292                         pe->flags |= PNV_IODA_PE_MASTER;
293                         INIT_LIST_HEAD(&pe->slaves);
294                         master_pe = pe;
295                 } else {
296                         pe->flags |= PNV_IODA_PE_SLAVE;
297                         pe->master = master_pe;
298                         list_add_tail(&pe->list, &master_pe->slaves);
299                 }
300         }
301
302         kfree(pe_alloc);
303         return master_pe->pe_number;
304 }
305
306 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
307 {
308         struct pci_controller *hose = phb->hose;
309         struct device_node *dn = hose->dn;
310         struct resource *res;
311         const u32 *r;
312         u64 pci_addr;
313
314         if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
315                 pr_info("  Firmware too old to support M64 window\n");
316                 return;
317         }
318
319         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
320         if (!r) {
321                 pr_info("  No <ibm,opal-m64-window> on %s\n",
322                         dn->full_name);
323                 return;
324         }
325
326         /* FIXME: Support M64 for P7IOC */
327         if (phb->type != PNV_PHB_IODA2) {
328                 pr_info("  Not support M64 window\n");
329                 return;
330         }
331
332         res = &hose->mem_resources[1];
333         res->start = of_translate_address(dn, r + 2);
334         res->end = res->start + of_read_number(r + 4, 2) - 1;
335         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
336         pci_addr = of_read_number(r, 2);
337         hose->mem_offset[1] = res->start - pci_addr;
338
339         phb->ioda.m64_size = resource_size(res);
340         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
341         phb->ioda.m64_base = pci_addr;
342
343         /* Use last M64 BAR to cover M64 window */
344         phb->ioda.m64_bar_idx = 15;
345         phb->init_m64 = pnv_ioda2_init_m64;
346         phb->alloc_m64_pe = pnv_ioda2_alloc_m64_pe;
347         phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
348 }
349
350 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
351 {
352         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
353         struct pnv_ioda_pe *slave;
354         s64 rc;
355
356         /* Fetch master PE */
357         if (pe->flags & PNV_IODA_PE_SLAVE) {
358                 pe = pe->master;
359                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
360                 pe_no = pe->pe_number;
361         }
362
363         /* Freeze master PE */
364         rc = opal_pci_eeh_freeze_set(phb->opal_id,
365                                      pe_no,
366                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
367         if (rc != OPAL_SUCCESS) {
368                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
369                         __func__, rc, phb->hose->global_number, pe_no);
370                 return;
371         }
372
373         /* Freeze slave PEs */
374         if (!(pe->flags & PNV_IODA_PE_MASTER))
375                 return;
376
377         list_for_each_entry(slave, &pe->slaves, list) {
378                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
379                                              slave->pe_number,
380                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
381                 if (rc != OPAL_SUCCESS)
382                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
383                                 __func__, rc, phb->hose->global_number,
384                                 slave->pe_number);
385         }
386 }
387
388 int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
389 {
390         struct pnv_ioda_pe *pe, *slave;
391         s64 rc;
392
393         /* Find master PE */
394         pe = &phb->ioda.pe_array[pe_no];
395         if (pe->flags & PNV_IODA_PE_SLAVE) {
396                 pe = pe->master;
397                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
398                 pe_no = pe->pe_number;
399         }
400
401         /* Clear frozen state for master PE */
402         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
403         if (rc != OPAL_SUCCESS) {
404                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
405                         __func__, rc, opt, phb->hose->global_number, pe_no);
406                 return -EIO;
407         }
408
409         if (!(pe->flags & PNV_IODA_PE_MASTER))
410                 return 0;
411
412         /* Clear frozen state for slave PEs */
413         list_for_each_entry(slave, &pe->slaves, list) {
414                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
415                                              slave->pe_number,
416                                              opt);
417                 if (rc != OPAL_SUCCESS) {
418                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
419                                 __func__, rc, opt, phb->hose->global_number,
420                                 slave->pe_number);
421                         return -EIO;
422                 }
423         }
424
425         return 0;
426 }
427
428 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
429 {
430         struct pnv_ioda_pe *slave, *pe;
431         u8 fstate, state;
432         __be16 pcierr;
433         s64 rc;
434
435         /* Sanity check on PE number */
436         if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
437                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
438
439         /*
440          * Fetch the master PE and the PE instance might be
441          * not initialized yet.
442          */
443         pe = &phb->ioda.pe_array[pe_no];
444         if (pe->flags & PNV_IODA_PE_SLAVE) {
445                 pe = pe->master;
446                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
447                 pe_no = pe->pe_number;
448         }
449
450         /* Check the master PE */
451         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
452                                         &state, &pcierr, NULL);
453         if (rc != OPAL_SUCCESS) {
454                 pr_warn("%s: Failure %lld getting "
455                         "PHB#%x-PE#%x state\n",
456                         __func__, rc,
457                         phb->hose->global_number, pe_no);
458                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
459         }
460
461         /* Check the slave PE */
462         if (!(pe->flags & PNV_IODA_PE_MASTER))
463                 return state;
464
465         list_for_each_entry(slave, &pe->slaves, list) {
466                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
467                                                 slave->pe_number,
468                                                 &fstate,
469                                                 &pcierr,
470                                                 NULL);
471                 if (rc != OPAL_SUCCESS) {
472                         pr_warn("%s: Failure %lld getting "
473                                 "PHB#%x-PE#%x state\n",
474                                 __func__, rc,
475                                 phb->hose->global_number, slave->pe_number);
476                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
477                 }
478
479                 /*
480                  * Override the result based on the ascending
481                  * priority.
482                  */
483                 if (fstate > state)
484                         state = fstate;
485         }
486
487         return state;
488 }
489
490 /* Currently those 2 are only used when MSIs are enabled, this will change
491  * but in the meantime, we need to protect them to avoid warnings
492  */
493 #ifdef CONFIG_PCI_MSI
494 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
495 {
496         struct pci_controller *hose = pci_bus_to_host(dev->bus);
497         struct pnv_phb *phb = hose->private_data;
498         struct pci_dn *pdn = pci_get_pdn(dev);
499
500         if (!pdn)
501                 return NULL;
502         if (pdn->pe_number == IODA_INVALID_PE)
503                 return NULL;
504         return &phb->ioda.pe_array[pdn->pe_number];
505 }
506 #endif /* CONFIG_PCI_MSI */
507
508 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
509 {
510         struct pci_dev *parent;
511         uint8_t bcomp, dcomp, fcomp;
512         long rc, rid_end, rid;
513
514         /* Bus validation ? */
515         if (pe->pbus) {
516                 int count;
517
518                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
519                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
520                 parent = pe->pbus->self;
521                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
522                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
523                 else
524                         count = 1;
525
526                 switch(count) {
527                 case  1: bcomp = OpalPciBusAll;         break;
528                 case  2: bcomp = OpalPciBus7Bits;       break;
529                 case  4: bcomp = OpalPciBus6Bits;       break;
530                 case  8: bcomp = OpalPciBus5Bits;       break;
531                 case 16: bcomp = OpalPciBus4Bits;       break;
532                 case 32: bcomp = OpalPciBus3Bits;       break;
533                 default:
534                         pr_err("%s: Number of subordinate busses %d"
535                                " unsupported\n",
536                                pci_name(pe->pbus->self), count);
537                         /* Do an exact match only */
538                         bcomp = OpalPciBusAll;
539                 }
540                 rid_end = pe->rid + (count << 8);
541         } else {
542                 parent = pe->pdev->bus->self;
543                 bcomp = OpalPciBusAll;
544                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
545                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
546                 rid_end = pe->rid + 1;
547         }
548
549         /*
550          * Associate PE in PELT. We need add the PE into the
551          * corresponding PELT-V as well. Otherwise, the error
552          * originated from the PE might contribute to other
553          * PEs.
554          */
555         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
556                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
557         if (rc) {
558                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
559                 return -ENXIO;
560         }
561
562         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
563                                 pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
564         if (rc)
565                 pe_warn(pe, "OPAL error %d adding self to PELTV\n", rc);
566         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
567                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
568
569         /* Add to all parents PELT-V */
570         while (parent) {
571                 struct pci_dn *pdn = pci_get_pdn(parent);
572                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
573                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
574                                                 pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
575                         /* XXX What to do in case of error ? */
576                 }
577                 parent = parent->bus->self;
578         }
579         /* Setup reverse map */
580         for (rid = pe->rid; rid < rid_end; rid++)
581                 phb->ioda.pe_rmap[rid] = pe->pe_number;
582
583         /* Setup one MVTs on IODA1 */
584         if (phb->type == PNV_PHB_IODA1) {
585                 pe->mve_number = pe->pe_number;
586                 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
587                                       pe->pe_number);
588                 if (rc) {
589                         pe_err(pe, "OPAL error %ld setting up MVE %d\n",
590                                rc, pe->mve_number);
591                         pe->mve_number = -1;
592                 } else {
593                         rc = opal_pci_set_mve_enable(phb->opal_id,
594                                                      pe->mve_number, OPAL_ENABLE_MVE);
595                         if (rc) {
596                                 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
597                                        rc, pe->mve_number);
598                                 pe->mve_number = -1;
599                         }
600                 }
601         } else if (phb->type == PNV_PHB_IODA2)
602                 pe->mve_number = 0;
603
604         return 0;
605 }
606
607 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
608                                        struct pnv_ioda_pe *pe)
609 {
610         struct pnv_ioda_pe *lpe;
611
612         list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
613                 if (lpe->dma_weight < pe->dma_weight) {
614                         list_add_tail(&pe->dma_link, &lpe->dma_link);
615                         return;
616                 }
617         }
618         list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
619 }
620
621 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
622 {
623         /* This is quite simplistic. The "base" weight of a device
624          * is 10. 0 means no DMA is to be accounted for it.
625          */
626
627         /* If it's a bridge, no DMA */
628         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
629                 return 0;
630
631         /* Reduce the weight of slow USB controllers */
632         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
633             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
634             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
635                 return 3;
636
637         /* Increase the weight of RAID (includes Obsidian) */
638         if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
639                 return 15;
640
641         /* Default */
642         return 10;
643 }
644
645 #if 0
646 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
647 {
648         struct pci_controller *hose = pci_bus_to_host(dev->bus);
649         struct pnv_phb *phb = hose->private_data;
650         struct pci_dn *pdn = pci_get_pdn(dev);
651         struct pnv_ioda_pe *pe;
652         int pe_num;
653
654         if (!pdn) {
655                 pr_err("%s: Device tree node not associated properly\n",
656                            pci_name(dev));
657                 return NULL;
658         }
659         if (pdn->pe_number != IODA_INVALID_PE)
660                 return NULL;
661
662         /* PE#0 has been pre-set */
663         if (dev->bus->number == 0)
664                 pe_num = 0;
665         else
666                 pe_num = pnv_ioda_alloc_pe(phb);
667         if (pe_num == IODA_INVALID_PE) {
668                 pr_warning("%s: Not enough PE# available, disabling device\n",
669                            pci_name(dev));
670                 return NULL;
671         }
672
673         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
674          * pointer in the PE data structure, both should be destroyed at the
675          * same time. However, this needs to be looked at more closely again
676          * once we actually start removing things (Hotplug, SR-IOV, ...)
677          *
678          * At some point we want to remove the PDN completely anyways
679          */
680         pe = &phb->ioda.pe_array[pe_num];
681         pci_dev_get(dev);
682         pdn->pcidev = dev;
683         pdn->pe_number = pe_num;
684         pe->pdev = dev;
685         pe->pbus = NULL;
686         pe->tce32_seg = -1;
687         pe->mve_number = -1;
688         pe->rid = dev->bus->number << 8 | pdn->devfn;
689
690         pe_info(pe, "Associated device to PE\n");
691
692         if (pnv_ioda_configure_pe(phb, pe)) {
693                 /* XXX What do we do here ? */
694                 if (pe_num)
695                         pnv_ioda_free_pe(phb, pe_num);
696                 pdn->pe_number = IODA_INVALID_PE;
697                 pe->pdev = NULL;
698                 pci_dev_put(dev);
699                 return NULL;
700         }
701
702         /* Assign a DMA weight to the device */
703         pe->dma_weight = pnv_ioda_dma_weight(dev);
704         if (pe->dma_weight != 0) {
705                 phb->ioda.dma_weight += pe->dma_weight;
706                 phb->ioda.dma_pe_count++;
707         }
708
709         /* Link the PE */
710         pnv_ioda_link_pe_by_weight(phb, pe);
711
712         return pe;
713 }
714 #endif /* Useful for SRIOV case */
715
716 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
717 {
718         struct pci_dev *dev;
719
720         list_for_each_entry(dev, &bus->devices, bus_list) {
721                 struct pci_dn *pdn = pci_get_pdn(dev);
722
723                 if (pdn == NULL) {
724                         pr_warn("%s: No device node associated with device !\n",
725                                 pci_name(dev));
726                         continue;
727                 }
728                 pdn->pcidev = dev;
729                 pdn->pe_number = pe->pe_number;
730                 pe->dma_weight += pnv_ioda_dma_weight(dev);
731                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
732                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
733         }
734 }
735
736 /*
737  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
738  * single PCI bus. Another one that contains the primary PCI bus and its
739  * subordinate PCI devices and buses. The second type of PE is normally
740  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
741  */
742 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
743 {
744         struct pci_controller *hose = pci_bus_to_host(bus);
745         struct pnv_phb *phb = hose->private_data;
746         struct pnv_ioda_pe *pe;
747         int pe_num = IODA_INVALID_PE;
748
749         /* Check if PE is determined by M64 */
750         if (phb->pick_m64_pe)
751                 pe_num = phb->pick_m64_pe(phb, bus, all);
752
753         /* The PE number isn't pinned by M64 */
754         if (pe_num == IODA_INVALID_PE)
755                 pe_num = pnv_ioda_alloc_pe(phb);
756
757         if (pe_num == IODA_INVALID_PE) {
758                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
759                         __func__, pci_domain_nr(bus), bus->number);
760                 return;
761         }
762
763         pe = &phb->ioda.pe_array[pe_num];
764         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
765         pe->pbus = bus;
766         pe->pdev = NULL;
767         pe->tce32_seg = -1;
768         pe->mve_number = -1;
769         pe->rid = bus->busn_res.start << 8;
770         pe->dma_weight = 0;
771
772         if (all)
773                 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
774                         bus->busn_res.start, bus->busn_res.end, pe_num);
775         else
776                 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
777                         bus->busn_res.start, pe_num);
778
779         if (pnv_ioda_configure_pe(phb, pe)) {
780                 /* XXX What do we do here ? */
781                 if (pe_num)
782                         pnv_ioda_free_pe(phb, pe_num);
783                 pe->pbus = NULL;
784                 return;
785         }
786
787         /* Associate it with all child devices */
788         pnv_ioda_setup_same_PE(bus, pe);
789
790         /* Put PE to the list */
791         list_add_tail(&pe->list, &phb->ioda.pe_list);
792
793         /* Account for one DMA PE if at least one DMA capable device exist
794          * below the bridge
795          */
796         if (pe->dma_weight != 0) {
797                 phb->ioda.dma_weight += pe->dma_weight;
798                 phb->ioda.dma_pe_count++;
799         }
800
801         /* Link the PE */
802         pnv_ioda_link_pe_by_weight(phb, pe);
803 }
804
805 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
806 {
807         struct pci_dev *dev;
808
809         pnv_ioda_setup_bus_PE(bus, 0);
810
811         list_for_each_entry(dev, &bus->devices, bus_list) {
812                 if (dev->subordinate) {
813                         if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
814                                 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
815                         else
816                                 pnv_ioda_setup_PEs(dev->subordinate);
817                 }
818         }
819 }
820
821 /*
822  * Configure PEs so that the downstream PCI buses and devices
823  * could have their associated PE#. Unfortunately, we didn't
824  * figure out the way to identify the PLX bridge yet. So we
825  * simply put the PCI bus and the subordinate behind the root
826  * port to PE# here. The game rule here is expected to be changed
827  * as soon as we can detected PLX bridge correctly.
828  */
829 static void pnv_pci_ioda_setup_PEs(void)
830 {
831         struct pci_controller *hose, *tmp;
832         struct pnv_phb *phb;
833
834         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
835                 phb = hose->private_data;
836
837                 /* M64 layout might affect PE allocation */
838                 if (phb->alloc_m64_pe)
839                         phb->alloc_m64_pe(phb);
840
841                 pnv_ioda_setup_PEs(hose->bus);
842         }
843 }
844
845 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
846 {
847         struct pci_dn *pdn = pci_get_pdn(pdev);
848         struct pnv_ioda_pe *pe;
849
850         /*
851          * The function can be called while the PE#
852          * hasn't been assigned. Do nothing for the
853          * case.
854          */
855         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
856                 return;
857
858         pe = &phb->ioda.pe_array[pdn->pe_number];
859         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
860         set_iommu_table_base(&pdev->dev, &pe->tce32_table);
861 }
862
863 static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
864                                      struct pci_dev *pdev, u64 dma_mask)
865 {
866         struct pci_dn *pdn = pci_get_pdn(pdev);
867         struct pnv_ioda_pe *pe;
868         uint64_t top;
869         bool bypass = false;
870
871         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
872                 return -ENODEV;;
873
874         pe = &phb->ioda.pe_array[pdn->pe_number];
875         if (pe->tce_bypass_enabled) {
876                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
877                 bypass = (dma_mask >= top);
878         }
879
880         if (bypass) {
881                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
882                 set_dma_ops(&pdev->dev, &dma_direct_ops);
883                 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
884         } else {
885                 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
886                 set_dma_ops(&pdev->dev, &dma_iommu_ops);
887                 set_iommu_table_base(&pdev->dev, &pe->tce32_table);
888         }
889         *pdev->dev.dma_mask = dma_mask;
890         return 0;
891 }
892
893 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
894                                    struct pci_bus *bus,
895                                    bool add_to_iommu_group)
896 {
897         struct pci_dev *dev;
898
899         list_for_each_entry(dev, &bus->devices, bus_list) {
900                 if (add_to_iommu_group)
901                         set_iommu_table_base_and_group(&dev->dev,
902                                                        &pe->tce32_table);
903                 else
904                         set_iommu_table_base(&dev->dev, &pe->tce32_table);
905
906                 if (dev->subordinate)
907                         pnv_ioda_setup_bus_dma(pe, dev->subordinate,
908                                                add_to_iommu_group);
909         }
910 }
911
912 static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
913                                          struct iommu_table *tbl,
914                                          __be64 *startp, __be64 *endp, bool rm)
915 {
916         __be64 __iomem *invalidate = rm ?
917                 (__be64 __iomem *)pe->tce_inval_reg_phys :
918                 (__be64 __iomem *)tbl->it_index;
919         unsigned long start, end, inc;
920         const unsigned shift = tbl->it_page_shift;
921
922         start = __pa(startp);
923         end = __pa(endp);
924
925         /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
926         if (tbl->it_busno) {
927                 start <<= shift;
928                 end <<= shift;
929                 inc = 128ull << shift;
930                 start |= tbl->it_busno;
931                 end |= tbl->it_busno;
932         } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
933                 /* p7ioc-style invalidation, 2 TCEs per write */
934                 start |= (1ull << 63);
935                 end |= (1ull << 63);
936                 inc = 16;
937         } else {
938                 /* Default (older HW) */
939                 inc = 128;
940         }
941
942         end |= inc - 1; /* round up end to be different than start */
943
944         mb(); /* Ensure above stores are visible */
945         while (start <= end) {
946                 if (rm)
947                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
948                 else
949                         __raw_writeq(cpu_to_be64(start), invalidate);
950                 start += inc;
951         }
952
953         /*
954          * The iommu layer will do another mb() for us on build()
955          * and we don't care on free()
956          */
957 }
958
959 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
960                                          struct iommu_table *tbl,
961                                          __be64 *startp, __be64 *endp, bool rm)
962 {
963         unsigned long start, end, inc;
964         __be64 __iomem *invalidate = rm ?
965                 (__be64 __iomem *)pe->tce_inval_reg_phys :
966                 (__be64 __iomem *)tbl->it_index;
967         const unsigned shift = tbl->it_page_shift;
968
969         /* We'll invalidate DMA address in PE scope */
970         start = 0x2ull << 60;
971         start |= (pe->pe_number & 0xFF);
972         end = start;
973
974         /* Figure out the start, end and step */
975         inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
976         start |= (inc << shift);
977         inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
978         end |= (inc << shift);
979         inc = (0x1ull << shift);
980         mb();
981
982         while (start <= end) {
983                 if (rm)
984                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
985                 else
986                         __raw_writeq(cpu_to_be64(start), invalidate);
987                 start += inc;
988         }
989 }
990
991 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
992                                  __be64 *startp, __be64 *endp, bool rm)
993 {
994         struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
995                                               tce32_table);
996         struct pnv_phb *phb = pe->phb;
997
998         if (phb->type == PNV_PHB_IODA1)
999                 pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
1000         else
1001                 pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
1002 }
1003
1004 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1005                                       struct pnv_ioda_pe *pe, unsigned int base,
1006                                       unsigned int segs)
1007 {
1008
1009         struct page *tce_mem = NULL;
1010         const __be64 *swinvp;
1011         struct iommu_table *tbl;
1012         unsigned int i;
1013         int64_t rc;
1014         void *addr;
1015
1016         /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
1017 #define TCE32_TABLE_SIZE        ((0x10000000 / 0x1000) * 8)
1018
1019         /* XXX FIXME: Handle 64-bit only DMA devices */
1020         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1021         /* XXX FIXME: Allocate multi-level tables on PHB3 */
1022
1023         /* We shouldn't already have a 32-bit DMA associated */
1024         if (WARN_ON(pe->tce32_seg >= 0))
1025                 return;
1026
1027         /* Grab a 32-bit TCE table */
1028         pe->tce32_seg = base;
1029         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1030                 (base << 28), ((base + segs) << 28) - 1);
1031
1032         /* XXX Currently, we allocate one big contiguous table for the
1033          * TCEs. We only really need one chunk per 256M of TCE space
1034          * (ie per segment) but that's an optimization for later, it
1035          * requires some added smarts with our get/put_tce implementation
1036          */
1037         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1038                                    get_order(TCE32_TABLE_SIZE * segs));
1039         if (!tce_mem) {
1040                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1041                 goto fail;
1042         }
1043         addr = page_address(tce_mem);
1044         memset(addr, 0, TCE32_TABLE_SIZE * segs);
1045
1046         /* Configure HW */
1047         for (i = 0; i < segs; i++) {
1048                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1049                                               pe->pe_number,
1050                                               base + i, 1,
1051                                               __pa(addr) + TCE32_TABLE_SIZE * i,
1052                                               TCE32_TABLE_SIZE, 0x1000);
1053                 if (rc) {
1054                         pe_err(pe, " Failed to configure 32-bit TCE table,"
1055                                " err %ld\n", rc);
1056                         goto fail;
1057                 }
1058         }
1059
1060         /* Setup linux iommu table */
1061         tbl = &pe->tce32_table;
1062         pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1063                                   base << 28, IOMMU_PAGE_SHIFT_4K);
1064
1065         /* OPAL variant of P7IOC SW invalidated TCEs */
1066         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1067         if (swinvp) {
1068                 /* We need a couple more fields -- an address and a data
1069                  * to or.  Since the bus is only printed out on table free
1070                  * errors, and on the first pass the data will be a relative
1071                  * bus number, print that out instead.
1072                  */
1073                 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1074                 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1075                                 8);
1076                 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1077                                  TCE_PCI_SWINV_FREE   |
1078                                  TCE_PCI_SWINV_PAIR);
1079         }
1080         iommu_init_table(tbl, phb->hose->node);
1081         iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1082
1083         if (pe->pdev)
1084                 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1085         else
1086                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1087
1088         return;
1089  fail:
1090         /* XXX Failure: Try to fallback to 64-bit only ? */
1091         if (pe->tce32_seg >= 0)
1092                 pe->tce32_seg = -1;
1093         if (tce_mem)
1094                 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1095 }
1096
1097 static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
1098 {
1099         struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
1100                                               tce32_table);
1101         uint16_t window_id = (pe->pe_number << 1 ) + 1;
1102         int64_t rc;
1103
1104         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1105         if (enable) {
1106                 phys_addr_t top = memblock_end_of_DRAM();
1107
1108                 top = roundup_pow_of_two(top);
1109                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1110                                                      pe->pe_number,
1111                                                      window_id,
1112                                                      pe->tce_bypass_base,
1113                                                      top);
1114         } else {
1115                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1116                                                      pe->pe_number,
1117                                                      window_id,
1118                                                      pe->tce_bypass_base,
1119                                                      0);
1120
1121                 /*
1122                  * EEH needs the mapping between IOMMU table and group
1123                  * of those VFIO/KVM pass-through devices. We can postpone
1124                  * resetting DMA ops until the DMA mask is configured in
1125                  * host side.
1126                  */
1127                 if (pe->pdev)
1128                         set_iommu_table_base(&pe->pdev->dev, tbl);
1129                 else
1130                         pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
1131         }
1132         if (rc)
1133                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1134         else
1135                 pe->tce_bypass_enabled = enable;
1136 }
1137
1138 static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
1139                                           struct pnv_ioda_pe *pe)
1140 {
1141         /* TVE #1 is selected by PCI address bit 59 */
1142         pe->tce_bypass_base = 1ull << 59;
1143
1144         /* Install set_bypass callback for VFIO */
1145         pe->tce32_table.set_bypass = pnv_pci_ioda2_set_bypass;
1146
1147         /* Enable bypass by default */
1148         pnv_pci_ioda2_set_bypass(&pe->tce32_table, true);
1149 }
1150
1151 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1152                                        struct pnv_ioda_pe *pe)
1153 {
1154         struct page *tce_mem = NULL;
1155         void *addr;
1156         const __be64 *swinvp;
1157         struct iommu_table *tbl;
1158         unsigned int tce_table_size, end;
1159         int64_t rc;
1160
1161         /* We shouldn't already have a 32-bit DMA associated */
1162         if (WARN_ON(pe->tce32_seg >= 0))
1163                 return;
1164
1165         /* The PE will reserve all possible 32-bits space */
1166         pe->tce32_seg = 0;
1167         end = (1 << ilog2(phb->ioda.m32_pci_base));
1168         tce_table_size = (end / 0x1000) * 8;
1169         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1170                 end);
1171
1172         /* Allocate TCE table */
1173         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1174                                    get_order(tce_table_size));
1175         if (!tce_mem) {
1176                 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
1177                 goto fail;
1178         }
1179         addr = page_address(tce_mem);
1180         memset(addr, 0, tce_table_size);
1181
1182         /*
1183          * Map TCE table through TVT. The TVE index is the PE number
1184          * shifted by 1 bit for 32-bits DMA space.
1185          */
1186         rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1187                                         pe->pe_number << 1, 1, __pa(addr),
1188                                         tce_table_size, 0x1000);
1189         if (rc) {
1190                 pe_err(pe, "Failed to configure 32-bit TCE table,"
1191                        " err %ld\n", rc);
1192                 goto fail;
1193         }
1194
1195         /* Setup linux iommu table */
1196         tbl = &pe->tce32_table;
1197         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
1198                         IOMMU_PAGE_SHIFT_4K);
1199
1200         /* OPAL variant of PHB3 invalidated TCEs */
1201         swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1202         if (swinvp) {
1203                 /* We need a couple more fields -- an address and a data
1204                  * to or.  Since the bus is only printed out on table free
1205                  * errors, and on the first pass the data will be a relative
1206                  * bus number, print that out instead.
1207                  */
1208                 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1209                 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1210                                 8);
1211                 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
1212         }
1213         iommu_init_table(tbl, phb->hose->node);
1214         iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1215
1216         if (pe->pdev)
1217                 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1218         else
1219                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1220
1221         /* Also create a bypass window */
1222         pnv_pci_ioda2_setup_bypass_pe(phb, pe);
1223         return;
1224 fail:
1225         if (pe->tce32_seg >= 0)
1226                 pe->tce32_seg = -1;
1227         if (tce_mem)
1228                 __free_pages(tce_mem, get_order(tce_table_size));
1229 }
1230
1231 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
1232 {
1233         struct pci_controller *hose = phb->hose;
1234         unsigned int residual, remaining, segs, tw, base;
1235         struct pnv_ioda_pe *pe;
1236
1237         /* If we have more PE# than segments available, hand out one
1238          * per PE until we run out and let the rest fail. If not,
1239          * then we assign at least one segment per PE, plus more based
1240          * on the amount of devices under that PE
1241          */
1242         if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
1243                 residual = 0;
1244         else
1245                 residual = phb->ioda.tce32_count -
1246                         phb->ioda.dma_pe_count;
1247
1248         pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
1249                 hose->global_number, phb->ioda.tce32_count);
1250         pr_info("PCI: %d PE# for a total weight of %d\n",
1251                 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
1252
1253         /* Walk our PE list and configure their DMA segments, hand them
1254          * out one base segment plus any residual segments based on
1255          * weight
1256          */
1257         remaining = phb->ioda.tce32_count;
1258         tw = phb->ioda.dma_weight;
1259         base = 0;
1260         list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
1261                 if (!pe->dma_weight)
1262                         continue;
1263                 if (!remaining) {
1264                         pe_warn(pe, "No DMA32 resources available\n");
1265                         continue;
1266                 }
1267                 segs = 1;
1268                 if (residual) {
1269                         segs += ((pe->dma_weight * residual)  + (tw / 2)) / tw;
1270                         if (segs > remaining)
1271                                 segs = remaining;
1272                 }
1273
1274                 /*
1275                  * For IODA2 compliant PHB3, we needn't care about the weight.
1276                  * The all available 32-bits DMA space will be assigned to
1277                  * the specific PE.
1278                  */
1279                 if (phb->type == PNV_PHB_IODA1) {
1280                         pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
1281                                 pe->dma_weight, segs);
1282                         pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
1283                 } else {
1284                         pe_info(pe, "Assign DMA32 space\n");
1285                         segs = 0;
1286                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
1287                 }
1288
1289                 remaining -= segs;
1290                 base += segs;
1291         }
1292 }
1293
1294 #ifdef CONFIG_PCI_MSI
1295 static void pnv_ioda2_msi_eoi(struct irq_data *d)
1296 {
1297         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1298         struct irq_chip *chip = irq_data_get_irq_chip(d);
1299         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
1300                                            ioda.irq_chip);
1301         int64_t rc;
1302
1303         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1304         WARN_ON_ONCE(rc);
1305
1306         icp_native_eoi(d);
1307 }
1308
1309 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
1310                                   unsigned int hwirq, unsigned int virq,
1311                                   unsigned int is_64, struct msi_msg *msg)
1312 {
1313         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1314         struct pci_dn *pdn = pci_get_pdn(dev);
1315         struct irq_data *idata;
1316         struct irq_chip *ichip;
1317         unsigned int xive_num = hwirq - phb->msi_base;
1318         __be32 data;
1319         int rc;
1320
1321         /* No PE assigned ? bail out ... no MSI for you ! */
1322         if (pe == NULL)
1323                 return -ENXIO;
1324
1325         /* Check if we have an MVE */
1326         if (pe->mve_number < 0)
1327                 return -ENXIO;
1328
1329         /* Force 32-bit MSI on some broken devices */
1330         if (pdn && pdn->force_32bit_msi)
1331                 is_64 = 0;
1332
1333         /* Assign XIVE to PE */
1334         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1335         if (rc) {
1336                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1337                         pci_name(dev), rc, xive_num);
1338                 return -EIO;
1339         }
1340
1341         if (is_64) {
1342                 __be64 addr64;
1343
1344                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1345                                      &addr64, &data);
1346                 if (rc) {
1347                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1348                                 pci_name(dev), rc);
1349                         return -EIO;
1350                 }
1351                 msg->address_hi = be64_to_cpu(addr64) >> 32;
1352                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
1353         } else {
1354                 __be32 addr32;
1355
1356                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1357                                      &addr32, &data);
1358                 if (rc) {
1359                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1360                                 pci_name(dev), rc);
1361                         return -EIO;
1362                 }
1363                 msg->address_hi = 0;
1364                 msg->address_lo = be32_to_cpu(addr32);
1365         }
1366         msg->data = be32_to_cpu(data);
1367
1368         /*
1369          * Change the IRQ chip for the MSI interrupts on PHB3.
1370          * The corresponding IRQ chip should be populated for
1371          * the first time.
1372          */
1373         if (phb->type == PNV_PHB_IODA2) {
1374                 if (!phb->ioda.irq_chip_init) {
1375                         idata = irq_get_irq_data(virq);
1376                         ichip = irq_data_get_irq_chip(idata);
1377                         phb->ioda.irq_chip_init = 1;
1378                         phb->ioda.irq_chip = *ichip;
1379                         phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
1380                 }
1381
1382                 irq_set_chip(virq, &phb->ioda.irq_chip);
1383         }
1384
1385         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
1386                  " address=%x_%08x data=%x PE# %d\n",
1387                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
1388                  msg->address_hi, msg->address_lo, data, pe->pe_number);
1389
1390         return 0;
1391 }
1392
1393 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1394 {
1395         unsigned int count;
1396         const __be32 *prop = of_get_property(phb->hose->dn,
1397                                              "ibm,opal-msi-ranges", NULL);
1398         if (!prop) {
1399                 /* BML Fallback */
1400                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1401         }
1402         if (!prop)
1403                 return;
1404
1405         phb->msi_base = be32_to_cpup(prop);
1406         count = be32_to_cpup(prop + 1);
1407         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
1408                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1409                        phb->hose->global_number);
1410                 return;
1411         }
1412
1413         phb->msi_setup = pnv_pci_ioda_msi_setup;
1414         phb->msi32_support = 1;
1415         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1416                 count, phb->msi_base);
1417 }
1418 #else
1419 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
1420 #endif /* CONFIG_PCI_MSI */
1421
1422 /*
1423  * This function is supposed to be called on basis of PE from top
1424  * to bottom style. So the the I/O or MMIO segment assigned to
1425  * parent PE could be overrided by its child PEs if necessary.
1426  */
1427 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
1428                                   struct pnv_ioda_pe *pe)
1429 {
1430         struct pnv_phb *phb = hose->private_data;
1431         struct pci_bus_region region;
1432         struct resource *res;
1433         int i, index;
1434         int rc;
1435
1436         /*
1437          * NOTE: We only care PCI bus based PE for now. For PCI
1438          * device based PE, for example SRIOV sensitive VF should
1439          * be figured out later.
1440          */
1441         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
1442
1443         pci_bus_for_each_resource(pe->pbus, res, i) {
1444                 if (!res || !res->flags ||
1445                     res->start > res->end)
1446                         continue;
1447
1448                 if (res->flags & IORESOURCE_IO) {
1449                         region.start = res->start - phb->ioda.io_pci_base;
1450                         region.end   = res->end - phb->ioda.io_pci_base;
1451                         index = region.start / phb->ioda.io_segsize;
1452
1453                         while (index < phb->ioda.total_pe &&
1454                                region.start <= region.end) {
1455                                 phb->ioda.io_segmap[index] = pe->pe_number;
1456                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1457                                         pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1458                                 if (rc != OPAL_SUCCESS) {
1459                                         pr_err("%s: OPAL error %d when mapping IO "
1460                                                "segment #%d to PE#%d\n",
1461                                                __func__, rc, index, pe->pe_number);
1462                                         break;
1463                                 }
1464
1465                                 region.start += phb->ioda.io_segsize;
1466                                 index++;
1467                         }
1468                 } else if (res->flags & IORESOURCE_MEM) {
1469                         region.start = res->start -
1470                                        hose->mem_offset[0] -
1471                                        phb->ioda.m32_pci_base;
1472                         region.end   = res->end -
1473                                        hose->mem_offset[0] -
1474                                        phb->ioda.m32_pci_base;
1475                         index = region.start / phb->ioda.m32_segsize;
1476
1477                         while (index < phb->ioda.total_pe &&
1478                                region.start <= region.end) {
1479                                 phb->ioda.m32_segmap[index] = pe->pe_number;
1480                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1481                                         pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1482                                 if (rc != OPAL_SUCCESS) {
1483                                         pr_err("%s: OPAL error %d when mapping M32 "
1484                                                "segment#%d to PE#%d",
1485                                                __func__, rc, index, pe->pe_number);
1486                                         break;
1487                                 }
1488
1489                                 region.start += phb->ioda.m32_segsize;
1490                                 index++;
1491                         }
1492                 }
1493         }
1494 }
1495
1496 static void pnv_pci_ioda_setup_seg(void)
1497 {
1498         struct pci_controller *tmp, *hose;
1499         struct pnv_phb *phb;
1500         struct pnv_ioda_pe *pe;
1501
1502         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1503                 phb = hose->private_data;
1504                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1505                         pnv_ioda_setup_pe_seg(hose, pe);
1506                 }
1507         }
1508 }
1509
1510 static void pnv_pci_ioda_setup_DMA(void)
1511 {
1512         struct pci_controller *hose, *tmp;
1513         struct pnv_phb *phb;
1514
1515         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1516                 pnv_ioda_setup_dma(hose->private_data);
1517
1518                 /* Mark the PHB initialization done */
1519                 phb = hose->private_data;
1520                 phb->initialized = 1;
1521         }
1522 }
1523
1524 static void pnv_pci_ioda_create_dbgfs(void)
1525 {
1526 #ifdef CONFIG_DEBUG_FS
1527         struct pci_controller *hose, *tmp;
1528         struct pnv_phb *phb;
1529         char name[16];
1530
1531         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1532                 phb = hose->private_data;
1533
1534                 sprintf(name, "PCI%04x", hose->global_number);
1535                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
1536                 if (!phb->dbgfs)
1537                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
1538                                 __func__, hose->global_number);
1539         }
1540 #endif /* CONFIG_DEBUG_FS */
1541 }
1542
1543 static void pnv_pci_ioda_fixup(void)
1544 {
1545         pnv_pci_ioda_setup_PEs();
1546         pnv_pci_ioda_setup_seg();
1547         pnv_pci_ioda_setup_DMA();
1548
1549         pnv_pci_ioda_create_dbgfs();
1550
1551 #ifdef CONFIG_EEH
1552         eeh_init();
1553         eeh_addr_cache_build();
1554 #endif
1555 }
1556
1557 /*
1558  * Returns the alignment for I/O or memory windows for P2P
1559  * bridges. That actually depends on how PEs are segmented.
1560  * For now, we return I/O or M32 segment size for PE sensitive
1561  * P2P bridges. Otherwise, the default values (4KiB for I/O,
1562  * 1MiB for memory) will be returned.
1563  *
1564  * The current PCI bus might be put into one PE, which was
1565  * create against the parent PCI bridge. For that case, we
1566  * needn't enlarge the alignment so that we can save some
1567  * resources.
1568  */
1569 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1570                                                 unsigned long type)
1571 {
1572         struct pci_dev *bridge;
1573         struct pci_controller *hose = pci_bus_to_host(bus);
1574         struct pnv_phb *phb = hose->private_data;
1575         int num_pci_bridges = 0;
1576
1577         bridge = bus->self;
1578         while (bridge) {
1579                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1580                         num_pci_bridges++;
1581                         if (num_pci_bridges >= 2)
1582                                 return 1;
1583                 }
1584
1585                 bridge = bridge->bus->self;
1586         }
1587
1588         /* We fail back to M32 if M64 isn't supported */
1589         if (phb->ioda.m64_segsize &&
1590             pnv_pci_is_mem_pref_64(type))
1591                 return phb->ioda.m64_segsize;
1592         if (type & IORESOURCE_MEM)
1593                 return phb->ioda.m32_segsize;
1594
1595         return phb->ioda.io_segsize;
1596 }
1597
1598 /* Prevent enabling devices for which we couldn't properly
1599  * assign a PE
1600  */
1601 static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1602 {
1603         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1604         struct pnv_phb *phb = hose->private_data;
1605         struct pci_dn *pdn;
1606
1607         /* The function is probably called while the PEs have
1608          * not be created yet. For example, resource reassignment
1609          * during PCI probe period. We just skip the check if
1610          * PEs isn't ready.
1611          */
1612         if (!phb->initialized)
1613                 return 0;
1614
1615         pdn = pci_get_pdn(dev);
1616         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1617                 return -EINVAL;
1618
1619         return 0;
1620 }
1621
1622 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1623                                u32 devfn)
1624 {
1625         return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1626 }
1627
1628 static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
1629 {
1630         opal_pci_reset(phb->opal_id, OPAL_PCI_IODA_TABLE_RESET,
1631                        OPAL_ASSERT_RESET);
1632 }
1633
1634 void __init pnv_pci_init_ioda_phb(struct device_node *np,
1635                                   u64 hub_id, int ioda_type)
1636 {
1637         struct pci_controller *hose;
1638         struct pnv_phb *phb;
1639         unsigned long size, m32map_off, pemap_off, iomap_off = 0;
1640         const __be64 *prop64;
1641         const __be32 *prop32;
1642         int len;
1643         u64 phb_id;
1644         void *aux;
1645         long rc;
1646
1647         pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1648
1649         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1650         if (!prop64) {
1651                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
1652                 return;
1653         }
1654         phb_id = be64_to_cpup(prop64);
1655         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
1656
1657         phb = alloc_bootmem(sizeof(struct pnv_phb));
1658         if (!phb) {
1659                 pr_err("  Out of memory !\n");
1660                 return;
1661         }
1662
1663         /* Allocate PCI controller */
1664         memset(phb, 0, sizeof(struct pnv_phb));
1665         phb->hose = hose = pcibios_alloc_controller(np);
1666         if (!phb->hose) {
1667                 pr_err("  Can't allocate PCI controller for %s\n",
1668                        np->full_name);
1669                 free_bootmem((unsigned long)phb, sizeof(struct pnv_phb));
1670                 return;
1671         }
1672
1673         spin_lock_init(&phb->lock);
1674         prop32 = of_get_property(np, "bus-range", &len);
1675         if (prop32 && len == 8) {
1676                 hose->first_busno = be32_to_cpu(prop32[0]);
1677                 hose->last_busno = be32_to_cpu(prop32[1]);
1678         } else {
1679                 pr_warn("  Broken <bus-range> on %s\n", np->full_name);
1680                 hose->first_busno = 0;
1681                 hose->last_busno = 0xff;
1682         }
1683         hose->private_data = phb;
1684         phb->hub_id = hub_id;
1685         phb->opal_id = phb_id;
1686         phb->type = ioda_type;
1687
1688         /* Detect specific models for error handling */
1689         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1690                 phb->model = PNV_PHB_MODEL_P7IOC;
1691         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
1692                 phb->model = PNV_PHB_MODEL_PHB3;
1693         else
1694                 phb->model = PNV_PHB_MODEL_UNKNOWN;
1695
1696         /* Parse 32-bit and IO ranges (if any) */
1697         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
1698
1699         /* Get registers */
1700         phb->regs = of_iomap(np, 0);
1701         if (phb->regs == NULL)
1702                 pr_err("  Failed to map registers !\n");
1703
1704         /* Initialize more IODA stuff */
1705         phb->ioda.total_pe = 1;
1706         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
1707         if (prop32)
1708                 phb->ioda.total_pe = be32_to_cpup(prop32);
1709         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
1710         if (prop32)
1711                 phb->ioda.reserved_pe = be32_to_cpup(prop32);
1712
1713         /* Parse 64-bit MMIO range */
1714         pnv_ioda_parse_m64_window(phb);
1715
1716         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
1717         /* FW Has already off top 64k of M32 space (MSI space) */
1718         phb->ioda.m32_size += 0x10000;
1719
1720         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
1721         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
1722         phb->ioda.io_size = hose->pci_io_size;
1723         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
1724         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
1725
1726         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
1727         size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
1728         m32map_off = size;
1729         size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
1730         if (phb->type == PNV_PHB_IODA1) {
1731                 iomap_off = size;
1732                 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
1733         }
1734         pemap_off = size;
1735         size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
1736         aux = alloc_bootmem(size);
1737         memset(aux, 0, size);
1738         phb->ioda.pe_alloc = aux;
1739         phb->ioda.m32_segmap = aux + m32map_off;
1740         if (phb->type == PNV_PHB_IODA1)
1741                 phb->ioda.io_segmap = aux + iomap_off;
1742         phb->ioda.pe_array = aux + pemap_off;
1743         set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
1744
1745         INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
1746         INIT_LIST_HEAD(&phb->ioda.pe_list);
1747
1748         /* Calculate how many 32-bit TCE segments we have */
1749         phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
1750
1751 #if 0 /* We should really do that ... */
1752         rc = opal_pci_set_phb_mem_window(opal->phb_id,
1753                                          window_type,
1754                                          window_num,
1755                                          starting_real_address,
1756                                          starting_pci_address,
1757                                          segment_size);
1758 #endif
1759
1760         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
1761                 phb->ioda.total_pe, phb->ioda.reserved_pe,
1762                 phb->ioda.m32_size, phb->ioda.m32_segsize);
1763         if (phb->ioda.m64_size)
1764                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
1765                         phb->ioda.m64_size, phb->ioda.m64_segsize);
1766         if (phb->ioda.io_size)
1767                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
1768                         phb->ioda.io_size, phb->ioda.io_segsize);
1769
1770
1771         phb->hose->ops = &pnv_pci_ops;
1772         phb->get_pe_state = pnv_ioda_get_pe_state;
1773         phb->freeze_pe = pnv_ioda_freeze_pe;
1774         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
1775 #ifdef CONFIG_EEH
1776         phb->eeh_ops = &ioda_eeh_ops;
1777 #endif
1778
1779         /* Setup RID -> PE mapping function */
1780         phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
1781
1782         /* Setup TCEs */
1783         phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
1784         phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
1785
1786         /* Setup shutdown function for kexec */
1787         phb->shutdown = pnv_pci_ioda_shutdown;
1788
1789         /* Setup MSI support */
1790         pnv_pci_init_ioda_msis(phb);
1791
1792         /*
1793          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
1794          * to let the PCI core do resource assignment. It's supposed
1795          * that the PCI core will do correct I/O and MMIO alignment
1796          * for the P2P bridge bars so that each PCI bus (excluding
1797          * the child P2P bridges) can form individual PE.
1798          */
1799         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
1800         ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
1801         ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
1802         ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
1803         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
1804
1805         /* Reset IODA tables to a clean state */
1806         rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
1807         if (rc)
1808                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
1809
1810         /* If we're running in kdump kerenl, the previous kerenl never
1811          * shutdown PCI devices correctly. We already got IODA table
1812          * cleaned out. So we have to issue PHB reset to stop all PCI
1813          * transactions from previous kerenl.
1814          */
1815         if (is_kdump_kernel()) {
1816                 pr_info("  Issue PHB reset ...\n");
1817                 ioda_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
1818                 ioda_eeh_phb_reset(hose, OPAL_DEASSERT_RESET);
1819         }
1820
1821         /* Configure M64 window */
1822         if (phb->init_m64 && phb->init_m64(phb))
1823                 hose->mem_resources[1].flags = 0;
1824 }
1825
1826 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
1827 {
1828         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
1829 }
1830
1831 void __init pnv_pci_init_ioda_hub(struct device_node *np)
1832 {
1833         struct device_node *phbn;
1834         const __be64 *prop64;
1835         u64 hub_id;
1836
1837         pr_info("Probing IODA IO-Hub %s\n", np->full_name);
1838
1839         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
1840         if (!prop64) {
1841                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
1842                 return;
1843         }
1844         hub_id = be64_to_cpup(prop64);
1845         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
1846
1847         /* Count child PHBs */
1848         for_each_child_of_node(np, phbn) {
1849                 /* Look for IODA1 PHBs */
1850                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
1851                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
1852         }
1853 }