Merge branch 'for-3.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[firefly-linux-kernel-4.4.55.git] / arch / powerpc / kvm / e500.c
1 /*
2  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
3  *
4  * Author: Yu Liu, <yu.liu@freescale.com>
5  *
6  * Description:
7  * This file is derived from arch/powerpc/kvm/44x.c,
8  * by Hollis Blanchard <hollisb@us.ibm.com>.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  */
14
15 #include <linux/kvm_host.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/export.h>
19
20 #include <asm/reg.h>
21 #include <asm/cputable.h>
22 #include <asm/tlbflush.h>
23 #include <asm/kvm_ppc.h>
24
25 #include "../mm/mmu_decl.h"
26 #include "booke.h"
27 #include "e500.h"
28
29 struct id {
30         unsigned long val;
31         struct id **pentry;
32 };
33
34 #define NUM_TIDS 256
35
36 /*
37  * This table provide mappings from:
38  * (guestAS,guestTID,guestPR) --> ID of physical cpu
39  * guestAS      [0..1]
40  * guestTID     [0..255]
41  * guestPR      [0..1]
42  * ID           [1..255]
43  * Each vcpu keeps one vcpu_id_table.
44  */
45 struct vcpu_id_table {
46         struct id id[2][NUM_TIDS][2];
47 };
48
49 /*
50  * This table provide reversed mappings of vcpu_id_table:
51  * ID --> address of vcpu_id_table item.
52  * Each physical core has one pcpu_id_table.
53  */
54 struct pcpu_id_table {
55         struct id *entry[NUM_TIDS];
56 };
57
58 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
59
60 /* This variable keeps last used shadow ID on local core.
61  * The valid range of shadow ID is [1..255] */
62 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
63
64 /*
65  * Allocate a free shadow id and setup a valid sid mapping in given entry.
66  * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
67  *
68  * The caller must have preemption disabled, and keep it that way until
69  * it has finished with the returned shadow id (either written into the
70  * TLB or arch.shadow_pid, or discarded).
71  */
72 static inline int local_sid_setup_one(struct id *entry)
73 {
74         unsigned long sid;
75         int ret = -1;
76
77         sid = ++(__get_cpu_var(pcpu_last_used_sid));
78         if (sid < NUM_TIDS) {
79                 __get_cpu_var(pcpu_sids).entry[sid] = entry;
80                 entry->val = sid;
81                 entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid];
82                 ret = sid;
83         }
84
85         /*
86          * If sid == NUM_TIDS, we've run out of sids.  We return -1, and
87          * the caller will invalidate everything and start over.
88          *
89          * sid > NUM_TIDS indicates a race, which we disable preemption to
90          * avoid.
91          */
92         WARN_ON(sid > NUM_TIDS);
93
94         return ret;
95 }
96
97 /*
98  * Check if given entry contain a valid shadow id mapping.
99  * An ID mapping is considered valid only if
100  * both vcpu and pcpu know this mapping.
101  *
102  * The caller must have preemption disabled, and keep it that way until
103  * it has finished with the returned shadow id (either written into the
104  * TLB or arch.shadow_pid, or discarded).
105  */
106 static inline int local_sid_lookup(struct id *entry)
107 {
108         if (entry && entry->val != 0 &&
109             __get_cpu_var(pcpu_sids).entry[entry->val] == entry &&
110             entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val])
111                 return entry->val;
112         return -1;
113 }
114
115 /* Invalidate all id mappings on local core -- call with preempt disabled */
116 static inline void local_sid_destroy_all(void)
117 {
118         __get_cpu_var(pcpu_last_used_sid) = 0;
119         memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids)));
120 }
121
122 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
123 {
124         vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
125         return vcpu_e500->idt;
126 }
127
128 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
129 {
130         kfree(vcpu_e500->idt);
131         vcpu_e500->idt = NULL;
132 }
133
134 /* Map guest pid to shadow.
135  * We use PID to keep shadow of current guest non-zero PID,
136  * and use PID1 to keep shadow of guest zero PID.
137  * So that guest tlbe with TID=0 can be accessed at any time */
138 static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
139 {
140         preempt_disable();
141         vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
142                         get_cur_as(&vcpu_e500->vcpu),
143                         get_cur_pid(&vcpu_e500->vcpu),
144                         get_cur_pr(&vcpu_e500->vcpu), 1);
145         vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
146                         get_cur_as(&vcpu_e500->vcpu), 0,
147                         get_cur_pr(&vcpu_e500->vcpu), 1);
148         preempt_enable();
149 }
150
151 /* Invalidate all mappings on vcpu */
152 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
153 {
154         memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
155
156         /* Update shadow pid when mappings are changed */
157         kvmppc_e500_recalc_shadow_pid(vcpu_e500);
158 }
159
160 /* Invalidate one ID mapping on vcpu */
161 static inline void kvmppc_e500_id_table_reset_one(
162                                struct kvmppc_vcpu_e500 *vcpu_e500,
163                                int as, int pid, int pr)
164 {
165         struct vcpu_id_table *idt = vcpu_e500->idt;
166
167         BUG_ON(as >= 2);
168         BUG_ON(pid >= NUM_TIDS);
169         BUG_ON(pr >= 2);
170
171         idt->id[as][pid][pr].val = 0;
172         idt->id[as][pid][pr].pentry = NULL;
173
174         /* Update shadow pid when mappings are changed */
175         kvmppc_e500_recalc_shadow_pid(vcpu_e500);
176 }
177
178 /*
179  * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
180  * This function first lookup if a valid mapping exists,
181  * if not, then creates a new one.
182  *
183  * The caller must have preemption disabled, and keep it that way until
184  * it has finished with the returned shadow id (either written into the
185  * TLB or arch.shadow_pid, or discarded).
186  */
187 unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
188                                  unsigned int as, unsigned int gid,
189                                  unsigned int pr, int avoid_recursion)
190 {
191         struct vcpu_id_table *idt = vcpu_e500->idt;
192         int sid;
193
194         BUG_ON(as >= 2);
195         BUG_ON(gid >= NUM_TIDS);
196         BUG_ON(pr >= 2);
197
198         sid = local_sid_lookup(&idt->id[as][gid][pr]);
199
200         while (sid <= 0) {
201                 /* No mapping yet */
202                 sid = local_sid_setup_one(&idt->id[as][gid][pr]);
203                 if (sid <= 0) {
204                         _tlbil_all();
205                         local_sid_destroy_all();
206                 }
207
208                 /* Update shadow pid when mappings are changed */
209                 if (!avoid_recursion)
210                         kvmppc_e500_recalc_shadow_pid(vcpu_e500);
211         }
212
213         return sid;
214 }
215
216 unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
217                                       struct kvm_book3e_206_tlb_entry *gtlbe)
218 {
219         return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
220                                    get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
221 }
222
223 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
224 {
225         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
226
227         if (vcpu->arch.pid != pid) {
228                 vcpu_e500->pid[0] = vcpu->arch.pid = pid;
229                 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
230         }
231 }
232
233 /* gtlbe must not be mapped by more than one host tlbe */
234 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
235                            struct kvm_book3e_206_tlb_entry *gtlbe)
236 {
237         struct vcpu_id_table *idt = vcpu_e500->idt;
238         unsigned int pr, tid, ts, pid;
239         u32 val, eaddr;
240         unsigned long flags;
241
242         ts = get_tlb_ts(gtlbe);
243         tid = get_tlb_tid(gtlbe);
244
245         preempt_disable();
246
247         /* One guest ID may be mapped to two shadow IDs */
248         for (pr = 0; pr < 2; pr++) {
249                 /*
250                  * The shadow PID can have a valid mapping on at most one
251                  * host CPU.  In the common case, it will be valid on this
252                  * CPU, in which case we do a local invalidation of the
253                  * specific address.
254                  *
255                  * If the shadow PID is not valid on the current host CPU,
256                  * we invalidate the entire shadow PID.
257                  */
258                 pid = local_sid_lookup(&idt->id[ts][tid][pr]);
259                 if (pid <= 0) {
260                         kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
261                         continue;
262                 }
263
264                 /*
265                  * The guest is invalidating a 4K entry which is in a PID
266                  * that has a valid shadow mapping on this host CPU.  We
267                  * search host TLB to invalidate it's shadow TLB entry,
268                  * similar to __tlbil_va except that we need to look in AS1.
269                  */
270                 val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
271                 eaddr = get_tlb_eaddr(gtlbe);
272
273                 local_irq_save(flags);
274
275                 mtspr(SPRN_MAS6, val);
276                 asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
277                 val = mfspr(SPRN_MAS1);
278                 if (val & MAS1_VALID) {
279                         mtspr(SPRN_MAS1, val & ~MAS1_VALID);
280                         asm volatile("tlbwe");
281                 }
282
283                 local_irq_restore(flags);
284         }
285
286         preempt_enable();
287 }
288
289 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
290 {
291         kvmppc_e500_id_table_reset_all(vcpu_e500);
292 }
293
294 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
295 {
296         /* Recalc shadow pid since MSR changes */
297         kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
298 }
299
300 void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu)
301 {
302 }
303
304 void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu)
305 {
306 }
307
308 void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
309 {
310         kvmppc_booke_vcpu_load(vcpu, cpu);
311
312         /* Shadow PID may be expired on local core */
313         kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
314 }
315
316 void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
317 {
318 #ifdef CONFIG_SPE
319         if (vcpu->arch.shadow_msr & MSR_SPE)
320                 kvmppc_vcpu_disable_spe(vcpu);
321 #endif
322
323         kvmppc_booke_vcpu_put(vcpu);
324 }
325
326 int kvmppc_core_check_processor_compat(void)
327 {
328         int r;
329
330         if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
331                 r = 0;
332         else
333                 r = -ENOTSUPP;
334
335         return r;
336 }
337
338 static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
339 {
340         struct kvm_book3e_206_tlb_entry *tlbe;
341
342         /* Insert large initial mapping for guest. */
343         tlbe = get_entry(vcpu_e500, 1, 0);
344         tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
345         tlbe->mas2 = 0;
346         tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
347
348         /* 4K map for serial output. Used by kernel wrapper. */
349         tlbe = get_entry(vcpu_e500, 1, 1);
350         tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
351         tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
352         tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
353 }
354
355 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
356 {
357         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
358
359         kvmppc_e500_tlb_setup(vcpu_e500);
360
361         /* Registers init */
362         vcpu->arch.pvr = mfspr(SPRN_PVR);
363         vcpu_e500->svr = mfspr(SPRN_SVR);
364
365         vcpu->arch.cpu_type = KVM_CPU_E500V2;
366
367         return 0;
368 }
369
370 void kvmppc_core_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
371 {
372         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
373
374         sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
375                                KVM_SREGS_E_PM;
376         sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
377
378         sregs->u.e.impl.fsl.features = 0;
379         sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
380         sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
381         sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
382
383         sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
384         sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
385         sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
386         sregs->u.e.ivor_high[3] =
387                 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
388
389         kvmppc_get_sregs_ivor(vcpu, sregs);
390         kvmppc_get_sregs_e500_tlb(vcpu, sregs);
391 }
392
393 int kvmppc_core_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
394 {
395         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
396         int ret;
397
398         if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
399                 vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
400                 vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
401                 vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
402         }
403
404         ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
405         if (ret < 0)
406                 return ret;
407
408         if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
409                 return 0;
410
411         if (sregs->u.e.features & KVM_SREGS_E_SPE) {
412                 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
413                         sregs->u.e.ivor_high[0];
414                 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
415                         sregs->u.e.ivor_high[1];
416                 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
417                         sregs->u.e.ivor_high[2];
418         }
419
420         if (sregs->u.e.features & KVM_SREGS_E_PM) {
421                 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
422                         sregs->u.e.ivor_high[3];
423         }
424
425         return kvmppc_set_sregs_ivor(vcpu, sregs);
426 }
427
428 struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
429 {
430         struct kvmppc_vcpu_e500 *vcpu_e500;
431         struct kvm_vcpu *vcpu;
432         int err;
433
434         vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
435         if (!vcpu_e500) {
436                 err = -ENOMEM;
437                 goto out;
438         }
439
440         vcpu = &vcpu_e500->vcpu;
441         err = kvm_vcpu_init(vcpu, kvm, id);
442         if (err)
443                 goto free_vcpu;
444
445         if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
446                 goto uninit_vcpu;
447
448         err = kvmppc_e500_tlb_init(vcpu_e500);
449         if (err)
450                 goto uninit_id;
451
452         vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
453         if (!vcpu->arch.shared)
454                 goto uninit_tlb;
455
456         return vcpu;
457
458 uninit_tlb:
459         kvmppc_e500_tlb_uninit(vcpu_e500);
460 uninit_id:
461         kvmppc_e500_id_table_free(vcpu_e500);
462 uninit_vcpu:
463         kvm_vcpu_uninit(vcpu);
464 free_vcpu:
465         kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
466 out:
467         return ERR_PTR(err);
468 }
469
470 void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
471 {
472         struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
473
474         free_page((unsigned long)vcpu->arch.shared);
475         kvmppc_e500_tlb_uninit(vcpu_e500);
476         kvmppc_e500_id_table_free(vcpu_e500);
477         kvm_vcpu_uninit(vcpu);
478         kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
479 }
480
481 int kvmppc_core_init_vm(struct kvm *kvm)
482 {
483         return 0;
484 }
485
486 void kvmppc_core_destroy_vm(struct kvm *kvm)
487 {
488 }
489
490 static int __init kvmppc_e500_init(void)
491 {
492         int r, i;
493         unsigned long ivor[3];
494         unsigned long max_ivor = 0;
495
496         r = kvmppc_core_check_processor_compat();
497         if (r)
498                 return r;
499
500         r = kvmppc_booke_init();
501         if (r)
502                 return r;
503
504         /* copy extra E500 exception handlers */
505         ivor[0] = mfspr(SPRN_IVOR32);
506         ivor[1] = mfspr(SPRN_IVOR33);
507         ivor[2] = mfspr(SPRN_IVOR34);
508         for (i = 0; i < 3; i++) {
509                 if (ivor[i] > max_ivor)
510                         max_ivor = ivor[i];
511
512                 memcpy((void *)kvmppc_booke_handlers + ivor[i],
513                        kvmppc_handlers_start + (i + 16) * kvmppc_handler_len,
514                        kvmppc_handler_len);
515         }
516         flush_icache_range(kvmppc_booke_handlers,
517                         kvmppc_booke_handlers + max_ivor + kvmppc_handler_len);
518
519         return kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
520 }
521
522 static void __exit kvmppc_e500_exit(void)
523 {
524         kvmppc_booke_exit();
525 }
526
527 module_init(kvmppc_e500_init);
528 module_exit(kvmppc_e500_exit);