Merge branch 'for-lsk' of git://git.linaro.org/arm/big.LITTLE/mp into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / arch / powerpc / kvm / book3s_64_mmu_hv.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16  */
17
18 #include <linux/types.h>
19 #include <linux/string.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_host.h>
22 #include <linux/highmem.h>
23 #include <linux/gfp.h>
24 #include <linux/slab.h>
25 #include <linux/hugetlb.h>
26 #include <linux/vmalloc.h>
27 #include <linux/srcu.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/file.h>
30
31 #include <asm/tlbflush.h>
32 #include <asm/kvm_ppc.h>
33 #include <asm/kvm_book3s.h>
34 #include <asm/mmu-hash64.h>
35 #include <asm/hvcall.h>
36 #include <asm/synch.h>
37 #include <asm/ppc-opcode.h>
38 #include <asm/cputable.h>
39
40 /* POWER7 has 10-bit LPIDs, PPC970 has 6-bit LPIDs */
41 #define MAX_LPID_970    63
42
43 /* Power architecture requires HPT is at least 256kB */
44 #define PPC_MIN_HPT_ORDER       18
45
46 static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47                                 long pte_index, unsigned long pteh,
48                                 unsigned long ptel, unsigned long *pte_idx_ret);
49 static void kvmppc_rmap_reset(struct kvm *kvm);
50
51 long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
52 {
53         unsigned long hpt;
54         struct revmap_entry *rev;
55         struct kvmppc_linear_info *li;
56         long order = kvm_hpt_order;
57
58         if (htab_orderp) {
59                 order = *htab_orderp;
60                 if (order < PPC_MIN_HPT_ORDER)
61                         order = PPC_MIN_HPT_ORDER;
62         }
63
64         /*
65          * If the user wants a different size from default,
66          * try first to allocate it from the kernel page allocator.
67          */
68         hpt = 0;
69         if (order != kvm_hpt_order) {
70                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
71                                        __GFP_NOWARN, order - PAGE_SHIFT);
72                 if (!hpt)
73                         --order;
74         }
75
76         /* Next try to allocate from the preallocated pool */
77         if (!hpt) {
78                 li = kvm_alloc_hpt();
79                 if (li) {
80                         hpt = (ulong)li->base_virt;
81                         kvm->arch.hpt_li = li;
82                         order = kvm_hpt_order;
83                 }
84         }
85
86         /* Lastly try successively smaller sizes from the page allocator */
87         while (!hpt && order > PPC_MIN_HPT_ORDER) {
88                 hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
89                                        __GFP_NOWARN, order - PAGE_SHIFT);
90                 if (!hpt)
91                         --order;
92         }
93
94         if (!hpt)
95                 return -ENOMEM;
96
97         kvm->arch.hpt_virt = hpt;
98         kvm->arch.hpt_order = order;
99         /* HPTEs are 2**4 bytes long */
100         kvm->arch.hpt_npte = 1ul << (order - 4);
101         /* 128 (2**7) bytes in each HPTEG */
102         kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
103
104         /* Allocate reverse map array */
105         rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
106         if (!rev) {
107                 pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
108                 goto out_freehpt;
109         }
110         kvm->arch.revmap = rev;
111         kvm->arch.sdr1 = __pa(hpt) | (order - 18);
112
113         pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
114                 hpt, order, kvm->arch.lpid);
115
116         if (htab_orderp)
117                 *htab_orderp = order;
118         return 0;
119
120  out_freehpt:
121         if (kvm->arch.hpt_li)
122                 kvm_release_hpt(kvm->arch.hpt_li);
123         else
124                 free_pages(hpt, order - PAGE_SHIFT);
125         return -ENOMEM;
126 }
127
128 long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
129 {
130         long err = -EBUSY;
131         long order;
132
133         mutex_lock(&kvm->lock);
134         if (kvm->arch.rma_setup_done) {
135                 kvm->arch.rma_setup_done = 0;
136                 /* order rma_setup_done vs. vcpus_running */
137                 smp_mb();
138                 if (atomic_read(&kvm->arch.vcpus_running)) {
139                         kvm->arch.rma_setup_done = 1;
140                         goto out;
141                 }
142         }
143         if (kvm->arch.hpt_virt) {
144                 order = kvm->arch.hpt_order;
145                 /* Set the entire HPT to 0, i.e. invalid HPTEs */
146                 memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
147                 /*
148                  * Reset all the reverse-mapping chains for all memslots
149                  */
150                 kvmppc_rmap_reset(kvm);
151                 /* Ensure that each vcpu will flush its TLB on next entry. */
152                 cpumask_setall(&kvm->arch.need_tlb_flush);
153                 *htab_orderp = order;
154                 err = 0;
155         } else {
156                 err = kvmppc_alloc_hpt(kvm, htab_orderp);
157                 order = *htab_orderp;
158         }
159  out:
160         mutex_unlock(&kvm->lock);
161         return err;
162 }
163
164 void kvmppc_free_hpt(struct kvm *kvm)
165 {
166         kvmppc_free_lpid(kvm->arch.lpid);
167         vfree(kvm->arch.revmap);
168         if (kvm->arch.hpt_li)
169                 kvm_release_hpt(kvm->arch.hpt_li);
170         else
171                 free_pages(kvm->arch.hpt_virt,
172                            kvm->arch.hpt_order - PAGE_SHIFT);
173 }
174
175 /* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
176 static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
177 {
178         return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
179 }
180
181 /* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
182 static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
183 {
184         return (pgsize == 0x10000) ? 0x1000 : 0;
185 }
186
187 void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
188                      unsigned long porder)
189 {
190         unsigned long i;
191         unsigned long npages;
192         unsigned long hp_v, hp_r;
193         unsigned long addr, hash;
194         unsigned long psize;
195         unsigned long hp0, hp1;
196         unsigned long idx_ret;
197         long ret;
198         struct kvm *kvm = vcpu->kvm;
199
200         psize = 1ul << porder;
201         npages = memslot->npages >> (porder - PAGE_SHIFT);
202
203         /* VRMA can't be > 1TB */
204         if (npages > 1ul << (40 - porder))
205                 npages = 1ul << (40 - porder);
206         /* Can't use more than 1 HPTE per HPTEG */
207         if (npages > kvm->arch.hpt_mask + 1)
208                 npages = kvm->arch.hpt_mask + 1;
209
210         hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
211                 HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
212         hp1 = hpte1_pgsize_encoding(psize) |
213                 HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
214
215         for (i = 0; i < npages; ++i) {
216                 addr = i << porder;
217                 /* can't use hpt_hash since va > 64 bits */
218                 hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
219                 /*
220                  * We assume that the hash table is empty and no
221                  * vcpus are using it at this stage.  Since we create
222                  * at most one HPTE per HPTEG, we just assume entry 7
223                  * is available and use it.
224                  */
225                 hash = (hash << 3) + 7;
226                 hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
227                 hp_r = hp1 | addr;
228                 ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
229                                                  &idx_ret);
230                 if (ret != H_SUCCESS) {
231                         pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
232                                addr, ret);
233                         break;
234                 }
235         }
236 }
237
238 int kvmppc_mmu_hv_init(void)
239 {
240         unsigned long host_lpid, rsvd_lpid;
241
242         if (!cpu_has_feature(CPU_FTR_HVMODE))
243                 return -EINVAL;
244
245         /* POWER7 has 10-bit LPIDs, PPC970 and e500mc have 6-bit LPIDs */
246         if (cpu_has_feature(CPU_FTR_ARCH_206)) {
247                 host_lpid = mfspr(SPRN_LPID);   /* POWER7 */
248                 rsvd_lpid = LPID_RSVD;
249         } else {
250                 host_lpid = 0;                  /* PPC970 */
251                 rsvd_lpid = MAX_LPID_970;
252         }
253
254         kvmppc_init_lpid(rsvd_lpid + 1);
255
256         kvmppc_claim_lpid(host_lpid);
257         /* rsvd_lpid is reserved for use in partition switching */
258         kvmppc_claim_lpid(rsvd_lpid);
259
260         return 0;
261 }
262
263 void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
264 {
265 }
266
267 static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
268 {
269         kvmppc_set_msr(vcpu, MSR_SF | MSR_ME);
270 }
271
272 /*
273  * This is called to get a reference to a guest page if there isn't
274  * one already in the memslot->arch.slot_phys[] array.
275  */
276 static long kvmppc_get_guest_page(struct kvm *kvm, unsigned long gfn,
277                                   struct kvm_memory_slot *memslot,
278                                   unsigned long psize)
279 {
280         unsigned long start;
281         long np, err;
282         struct page *page, *hpage, *pages[1];
283         unsigned long s, pgsize;
284         unsigned long *physp;
285         unsigned int is_io, got, pgorder;
286         struct vm_area_struct *vma;
287         unsigned long pfn, i, npages;
288
289         physp = memslot->arch.slot_phys;
290         if (!physp)
291                 return -EINVAL;
292         if (physp[gfn - memslot->base_gfn])
293                 return 0;
294
295         is_io = 0;
296         got = 0;
297         page = NULL;
298         pgsize = psize;
299         err = -EINVAL;
300         start = gfn_to_hva_memslot(memslot, gfn);
301
302         /* Instantiate and get the page we want access to */
303         np = get_user_pages_fast(start, 1, 1, pages);
304         if (np != 1) {
305                 /* Look up the vma for the page */
306                 down_read(&current->mm->mmap_sem);
307                 vma = find_vma(current->mm, start);
308                 if (!vma || vma->vm_start > start ||
309                     start + psize > vma->vm_end ||
310                     !(vma->vm_flags & VM_PFNMAP))
311                         goto up_err;
312                 is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
313                 pfn = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
314                 /* check alignment of pfn vs. requested page size */
315                 if (psize > PAGE_SIZE && (pfn & ((psize >> PAGE_SHIFT) - 1)))
316                         goto up_err;
317                 up_read(&current->mm->mmap_sem);
318
319         } else {
320                 page = pages[0];
321                 got = KVMPPC_GOT_PAGE;
322
323                 /* See if this is a large page */
324                 s = PAGE_SIZE;
325                 if (PageHuge(page)) {
326                         hpage = compound_head(page);
327                         s <<= compound_order(hpage);
328                         /* Get the whole large page if slot alignment is ok */
329                         if (s > psize && slot_is_aligned(memslot, s) &&
330                             !(memslot->userspace_addr & (s - 1))) {
331                                 start &= ~(s - 1);
332                                 pgsize = s;
333                                 get_page(hpage);
334                                 put_page(page);
335                                 page = hpage;
336                         }
337                 }
338                 if (s < psize)
339                         goto out;
340                 pfn = page_to_pfn(page);
341         }
342
343         npages = pgsize >> PAGE_SHIFT;
344         pgorder = __ilog2(npages);
345         physp += (gfn - memslot->base_gfn) & ~(npages - 1);
346         spin_lock(&kvm->arch.slot_phys_lock);
347         for (i = 0; i < npages; ++i) {
348                 if (!physp[i]) {
349                         physp[i] = ((pfn + i) << PAGE_SHIFT) +
350                                 got + is_io + pgorder;
351                         got = 0;
352                 }
353         }
354         spin_unlock(&kvm->arch.slot_phys_lock);
355         err = 0;
356
357  out:
358         if (got)
359                 put_page(page);
360         return err;
361
362  up_err:
363         up_read(&current->mm->mmap_sem);
364         return err;
365 }
366
367 long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
368                                 long pte_index, unsigned long pteh,
369                                 unsigned long ptel, unsigned long *pte_idx_ret)
370 {
371         unsigned long psize, gpa, gfn;
372         struct kvm_memory_slot *memslot;
373         long ret;
374
375         if (kvm->arch.using_mmu_notifiers)
376                 goto do_insert;
377
378         psize = hpte_page_size(pteh, ptel);
379         if (!psize)
380                 return H_PARAMETER;
381
382         pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
383
384         /* Find the memslot (if any) for this address */
385         gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
386         gfn = gpa >> PAGE_SHIFT;
387         memslot = gfn_to_memslot(kvm, gfn);
388         if (memslot && !(memslot->flags & KVM_MEMSLOT_INVALID)) {
389                 if (!slot_is_aligned(memslot, psize))
390                         return H_PARAMETER;
391                 if (kvmppc_get_guest_page(kvm, gfn, memslot, psize) < 0)
392                         return H_PARAMETER;
393         }
394
395  do_insert:
396         /* Protect linux PTE lookup from page table destruction */
397         rcu_read_lock_sched();  /* this disables preemption too */
398         ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
399                                 current->mm->pgd, false, pte_idx_ret);
400         rcu_read_unlock_sched();
401         if (ret == H_TOO_HARD) {
402                 /* this can't happen */
403                 pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
404                 ret = H_RESOURCE;       /* or something */
405         }
406         return ret;
407
408 }
409
410 /*
411  * We come here on a H_ENTER call from the guest when we are not
412  * using mmu notifiers and we don't have the requested page pinned
413  * already.
414  */
415 long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
416                              long pte_index, unsigned long pteh,
417                              unsigned long ptel)
418 {
419         return kvmppc_virtmode_do_h_enter(vcpu->kvm, flags, pte_index,
420                                           pteh, ptel, &vcpu->arch.gpr[4]);
421 }
422
423 static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
424                                                          gva_t eaddr)
425 {
426         u64 mask;
427         int i;
428
429         for (i = 0; i < vcpu->arch.slb_nr; i++) {
430                 if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
431                         continue;
432
433                 if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
434                         mask = ESID_MASK_1T;
435                 else
436                         mask = ESID_MASK;
437
438                 if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
439                         return &vcpu->arch.slb[i];
440         }
441         return NULL;
442 }
443
444 static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
445                         unsigned long ea)
446 {
447         unsigned long ra_mask;
448
449         ra_mask = hpte_page_size(v, r) - 1;
450         return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
451 }
452
453 static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
454                         struct kvmppc_pte *gpte, bool data)
455 {
456         struct kvm *kvm = vcpu->kvm;
457         struct kvmppc_slb *slbe;
458         unsigned long slb_v;
459         unsigned long pp, key;
460         unsigned long v, gr;
461         unsigned long *hptep;
462         int index;
463         int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
464
465         /* Get SLB entry */
466         if (virtmode) {
467                 slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
468                 if (!slbe)
469                         return -EINVAL;
470                 slb_v = slbe->origv;
471         } else {
472                 /* real mode access */
473                 slb_v = vcpu->kvm->arch.vrma_slb_v;
474         }
475
476         preempt_disable();
477         /* Find the HPTE in the hash table */
478         index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
479                                          HPTE_V_VALID | HPTE_V_ABSENT);
480         if (index < 0) {
481                 preempt_enable();
482                 return -ENOENT;
483         }
484         hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
485         v = hptep[0] & ~HPTE_V_HVLOCK;
486         gr = kvm->arch.revmap[index].guest_rpte;
487
488         /* Unlock the HPTE */
489         asm volatile("lwsync" : : : "memory");
490         hptep[0] = v;
491         preempt_enable();
492
493         gpte->eaddr = eaddr;
494         gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
495
496         /* Get PP bits and key for permission check */
497         pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
498         key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
499         key &= slb_v;
500
501         /* Calculate permissions */
502         gpte->may_read = hpte_read_permission(pp, key);
503         gpte->may_write = hpte_write_permission(pp, key);
504         gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
505
506         /* Storage key permission check for POWER7 */
507         if (data && virtmode && cpu_has_feature(CPU_FTR_ARCH_206)) {
508                 int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
509                 if (amrfield & 1)
510                         gpte->may_read = 0;
511                 if (amrfield & 2)
512                         gpte->may_write = 0;
513         }
514
515         /* Get the guest physical address */
516         gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
517         return 0;
518 }
519
520 /*
521  * Quick test for whether an instruction is a load or a store.
522  * If the instruction is a load or a store, then this will indicate
523  * which it is, at least on server processors.  (Embedded processors
524  * have some external PID instructions that don't follow the rule
525  * embodied here.)  If the instruction isn't a load or store, then
526  * this doesn't return anything useful.
527  */
528 static int instruction_is_store(unsigned int instr)
529 {
530         unsigned int mask;
531
532         mask = 0x10000000;
533         if ((instr & 0xfc000000) == 0x7c000000)
534                 mask = 0x100;           /* major opcode 31 */
535         return (instr & mask) != 0;
536 }
537
538 static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
539                                   unsigned long gpa, gva_t ea, int is_store)
540 {
541         int ret;
542         u32 last_inst;
543         unsigned long srr0 = kvmppc_get_pc(vcpu);
544
545         /* We try to load the last instruction.  We don't let
546          * emulate_instruction do it as it doesn't check what
547          * kvmppc_ld returns.
548          * If we fail, we just return to the guest and try executing it again.
549          */
550         if (vcpu->arch.last_inst == KVM_INST_FETCH_FAILED) {
551                 ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
552                 if (ret != EMULATE_DONE || last_inst == KVM_INST_FETCH_FAILED)
553                         return RESUME_GUEST;
554                 vcpu->arch.last_inst = last_inst;
555         }
556
557         /*
558          * WARNING: We do not know for sure whether the instruction we just
559          * read from memory is the same that caused the fault in the first
560          * place.  If the instruction we read is neither an load or a store,
561          * then it can't access memory, so we don't need to worry about
562          * enforcing access permissions.  So, assuming it is a load or
563          * store, we just check that its direction (load or store) is
564          * consistent with the original fault, since that's what we
565          * checked the access permissions against.  If there is a mismatch
566          * we just return and retry the instruction.
567          */
568
569         if (instruction_is_store(vcpu->arch.last_inst) != !!is_store)
570                 return RESUME_GUEST;
571
572         /*
573          * Emulated accesses are emulated by looking at the hash for
574          * translation once, then performing the access later. The
575          * translation could be invalidated in the meantime in which
576          * point performing the subsequent memory access on the old
577          * physical address could possibly be a security hole for the
578          * guest (but not the host).
579          *
580          * This is less of an issue for MMIO stores since they aren't
581          * globally visible. It could be an issue for MMIO loads to
582          * a certain extent but we'll ignore it for now.
583          */
584
585         vcpu->arch.paddr_accessed = gpa;
586         vcpu->arch.vaddr_accessed = ea;
587         return kvmppc_emulate_mmio(run, vcpu);
588 }
589
590 int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
591                                 unsigned long ea, unsigned long dsisr)
592 {
593         struct kvm *kvm = vcpu->kvm;
594         unsigned long *hptep, hpte[3], r;
595         unsigned long mmu_seq, psize, pte_size;
596         unsigned long gpa, gfn, hva, pfn;
597         struct kvm_memory_slot *memslot;
598         unsigned long *rmap;
599         struct revmap_entry *rev;
600         struct page *page, *pages[1];
601         long index, ret, npages;
602         unsigned long is_io;
603         unsigned int writing, write_ok;
604         struct vm_area_struct *vma;
605         unsigned long rcbits;
606
607         /*
608          * Real-mode code has already searched the HPT and found the
609          * entry we're interested in.  Lock the entry and check that
610          * it hasn't changed.  If it has, just return and re-execute the
611          * instruction.
612          */
613         if (ea != vcpu->arch.pgfault_addr)
614                 return RESUME_GUEST;
615         index = vcpu->arch.pgfault_index;
616         hptep = (unsigned long *)(kvm->arch.hpt_virt + (index << 4));
617         rev = &kvm->arch.revmap[index];
618         preempt_disable();
619         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
620                 cpu_relax();
621         hpte[0] = hptep[0] & ~HPTE_V_HVLOCK;
622         hpte[1] = hptep[1];
623         hpte[2] = r = rev->guest_rpte;
624         asm volatile("lwsync" : : : "memory");
625         hptep[0] = hpte[0];
626         preempt_enable();
627
628         if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
629             hpte[1] != vcpu->arch.pgfault_hpte[1])
630                 return RESUME_GUEST;
631
632         /* Translate the logical address and get the page */
633         psize = hpte_page_size(hpte[0], r);
634         gpa = (r & HPTE_R_RPN & ~(psize - 1)) | (ea & (psize - 1));
635         gfn = gpa >> PAGE_SHIFT;
636         memslot = gfn_to_memslot(kvm, gfn);
637
638         /* No memslot means it's an emulated MMIO region */
639         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
640                 return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
641                                               dsisr & DSISR_ISSTORE);
642
643         if (!kvm->arch.using_mmu_notifiers)
644                 return -EFAULT;         /* should never get here */
645
646         /* used to check for invalidations in progress */
647         mmu_seq = kvm->mmu_notifier_seq;
648         smp_rmb();
649
650         is_io = 0;
651         pfn = 0;
652         page = NULL;
653         pte_size = PAGE_SIZE;
654         writing = (dsisr & DSISR_ISSTORE) != 0;
655         /* If writing != 0, then the HPTE must allow writing, if we get here */
656         write_ok = writing;
657         hva = gfn_to_hva_memslot(memslot, gfn);
658         npages = get_user_pages_fast(hva, 1, writing, pages);
659         if (npages < 1) {
660                 /* Check if it's an I/O mapping */
661                 down_read(&current->mm->mmap_sem);
662                 vma = find_vma(current->mm, hva);
663                 if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
664                     (vma->vm_flags & VM_PFNMAP)) {
665                         pfn = vma->vm_pgoff +
666                                 ((hva - vma->vm_start) >> PAGE_SHIFT);
667                         pte_size = psize;
668                         is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
669                         write_ok = vma->vm_flags & VM_WRITE;
670                 }
671                 up_read(&current->mm->mmap_sem);
672                 if (!pfn)
673                         return -EFAULT;
674         } else {
675                 page = pages[0];
676                 if (PageHuge(page)) {
677                         page = compound_head(page);
678                         pte_size <<= compound_order(page);
679                 }
680                 /* if the guest wants write access, see if that is OK */
681                 if (!writing && hpte_is_writable(r)) {
682                         pte_t *ptep, pte;
683
684                         /*
685                          * We need to protect against page table destruction
686                          * while looking up and updating the pte.
687                          */
688                         rcu_read_lock_sched();
689                         ptep = find_linux_pte_or_hugepte(current->mm->pgd,
690                                                          hva, NULL);
691                         if (ptep && pte_present(*ptep)) {
692                                 pte = kvmppc_read_update_linux_pte(ptep, 1);
693                                 if (pte_write(pte))
694                                         write_ok = 1;
695                         }
696                         rcu_read_unlock_sched();
697                 }
698                 pfn = page_to_pfn(page);
699         }
700
701         ret = -EFAULT;
702         if (psize > pte_size)
703                 goto out_put;
704
705         /* Check WIMG vs. the actual page we're accessing */
706         if (!hpte_cache_flags_ok(r, is_io)) {
707                 if (is_io)
708                         return -EFAULT;
709                 /*
710                  * Allow guest to map emulated device memory as
711                  * uncacheable, but actually make it cacheable.
712                  */
713                 r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
714         }
715
716         /* Set the HPTE to point to pfn */
717         r = (r & ~(HPTE_R_PP0 - pte_size)) | (pfn << PAGE_SHIFT);
718         if (hpte_is_writable(r) && !write_ok)
719                 r = hpte_make_readonly(r);
720         ret = RESUME_GUEST;
721         preempt_disable();
722         while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
723                 cpu_relax();
724         if ((hptep[0] & ~HPTE_V_HVLOCK) != hpte[0] || hptep[1] != hpte[1] ||
725             rev->guest_rpte != hpte[2])
726                 /* HPTE has been changed under us; let the guest retry */
727                 goto out_unlock;
728         hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
729
730         rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
731         lock_rmap(rmap);
732
733         /* Check if we might have been invalidated; let the guest retry if so */
734         ret = RESUME_GUEST;
735         if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
736                 unlock_rmap(rmap);
737                 goto out_unlock;
738         }
739
740         /* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
741         rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
742         r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
743
744         if (hptep[0] & HPTE_V_VALID) {
745                 /* HPTE was previously valid, so we need to invalidate it */
746                 unlock_rmap(rmap);
747                 hptep[0] |= HPTE_V_ABSENT;
748                 kvmppc_invalidate_hpte(kvm, hptep, index);
749                 /* don't lose previous R and C bits */
750                 r |= hptep[1] & (HPTE_R_R | HPTE_R_C);
751         } else {
752                 kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
753         }
754
755         hptep[1] = r;
756         eieio();
757         hptep[0] = hpte[0];
758         asm volatile("ptesync" : : : "memory");
759         preempt_enable();
760         if (page && hpte_is_writable(r))
761                 SetPageDirty(page);
762
763  out_put:
764         if (page) {
765                 /*
766                  * We drop pages[0] here, not page because page might
767                  * have been set to the head page of a compound, but
768                  * we have to drop the reference on the correct tail
769                  * page to match the get inside gup()
770                  */
771                 put_page(pages[0]);
772         }
773         return ret;
774
775  out_unlock:
776         hptep[0] &= ~HPTE_V_HVLOCK;
777         preempt_enable();
778         goto out_put;
779 }
780
781 static void kvmppc_rmap_reset(struct kvm *kvm)
782 {
783         struct kvm_memslots *slots;
784         struct kvm_memory_slot *memslot;
785         int srcu_idx;
786
787         srcu_idx = srcu_read_lock(&kvm->srcu);
788         slots = kvm->memslots;
789         kvm_for_each_memslot(memslot, slots) {
790                 /*
791                  * This assumes it is acceptable to lose reference and
792                  * change bits across a reset.
793                  */
794                 memset(memslot->arch.rmap, 0,
795                        memslot->npages * sizeof(*memslot->arch.rmap));
796         }
797         srcu_read_unlock(&kvm->srcu, srcu_idx);
798 }
799
800 static int kvm_handle_hva_range(struct kvm *kvm,
801                                 unsigned long start,
802                                 unsigned long end,
803                                 int (*handler)(struct kvm *kvm,
804                                                unsigned long *rmapp,
805                                                unsigned long gfn))
806 {
807         int ret;
808         int retval = 0;
809         struct kvm_memslots *slots;
810         struct kvm_memory_slot *memslot;
811
812         slots = kvm_memslots(kvm);
813         kvm_for_each_memslot(memslot, slots) {
814                 unsigned long hva_start, hva_end;
815                 gfn_t gfn, gfn_end;
816
817                 hva_start = max(start, memslot->userspace_addr);
818                 hva_end = min(end, memslot->userspace_addr +
819                                         (memslot->npages << PAGE_SHIFT));
820                 if (hva_start >= hva_end)
821                         continue;
822                 /*
823                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
824                  * {gfn, gfn+1, ..., gfn_end-1}.
825                  */
826                 gfn = hva_to_gfn_memslot(hva_start, memslot);
827                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
828
829                 for (; gfn < gfn_end; ++gfn) {
830                         gfn_t gfn_offset = gfn - memslot->base_gfn;
831
832                         ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
833                         retval |= ret;
834                 }
835         }
836
837         return retval;
838 }
839
840 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
841                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
842                                          unsigned long gfn))
843 {
844         return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
845 }
846
847 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
848                            unsigned long gfn)
849 {
850         struct revmap_entry *rev = kvm->arch.revmap;
851         unsigned long h, i, j;
852         unsigned long *hptep;
853         unsigned long ptel, psize, rcbits;
854
855         for (;;) {
856                 lock_rmap(rmapp);
857                 if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
858                         unlock_rmap(rmapp);
859                         break;
860                 }
861
862                 /*
863                  * To avoid an ABBA deadlock with the HPTE lock bit,
864                  * we can't spin on the HPTE lock while holding the
865                  * rmap chain lock.
866                  */
867                 i = *rmapp & KVMPPC_RMAP_INDEX;
868                 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
869                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
870                         /* unlock rmap before spinning on the HPTE lock */
871                         unlock_rmap(rmapp);
872                         while (hptep[0] & HPTE_V_HVLOCK)
873                                 cpu_relax();
874                         continue;
875                 }
876                 j = rev[i].forw;
877                 if (j == i) {
878                         /* chain is now empty */
879                         *rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
880                 } else {
881                         /* remove i from chain */
882                         h = rev[i].back;
883                         rev[h].forw = j;
884                         rev[j].back = h;
885                         rev[i].forw = rev[i].back = i;
886                         *rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
887                 }
888
889                 /* Now check and modify the HPTE */
890                 ptel = rev[i].guest_rpte;
891                 psize = hpte_page_size(hptep[0], ptel);
892                 if ((hptep[0] & HPTE_V_VALID) &&
893                     hpte_rpn(ptel, psize) == gfn) {
894                         if (kvm->arch.using_mmu_notifiers)
895                                 hptep[0] |= HPTE_V_ABSENT;
896                         kvmppc_invalidate_hpte(kvm, hptep, i);
897                         /* Harvest R and C */
898                         rcbits = hptep[1] & (HPTE_R_R | HPTE_R_C);
899                         *rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
900                         if (rcbits & ~rev[i].guest_rpte) {
901                                 rev[i].guest_rpte = ptel | rcbits;
902                                 note_hpte_modification(kvm, &rev[i]);
903                         }
904                 }
905                 unlock_rmap(rmapp);
906                 hptep[0] &= ~HPTE_V_HVLOCK;
907         }
908         return 0;
909 }
910
911 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
912 {
913         if (kvm->arch.using_mmu_notifiers)
914                 kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
915         return 0;
916 }
917
918 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
919 {
920         if (kvm->arch.using_mmu_notifiers)
921                 kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
922         return 0;
923 }
924
925 void kvmppc_core_flush_memslot(struct kvm *kvm, struct kvm_memory_slot *memslot)
926 {
927         unsigned long *rmapp;
928         unsigned long gfn;
929         unsigned long n;
930
931         rmapp = memslot->arch.rmap;
932         gfn = memslot->base_gfn;
933         for (n = memslot->npages; n; --n) {
934                 /*
935                  * Testing the present bit without locking is OK because
936                  * the memslot has been marked invalid already, and hence
937                  * no new HPTEs referencing this page can be created,
938                  * thus the present bit can't go from 0 to 1.
939                  */
940                 if (*rmapp & KVMPPC_RMAP_PRESENT)
941                         kvm_unmap_rmapp(kvm, rmapp, gfn);
942                 ++rmapp;
943                 ++gfn;
944         }
945 }
946
947 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
948                          unsigned long gfn)
949 {
950         struct revmap_entry *rev = kvm->arch.revmap;
951         unsigned long head, i, j;
952         unsigned long *hptep;
953         int ret = 0;
954
955  retry:
956         lock_rmap(rmapp);
957         if (*rmapp & KVMPPC_RMAP_REFERENCED) {
958                 *rmapp &= ~KVMPPC_RMAP_REFERENCED;
959                 ret = 1;
960         }
961         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
962                 unlock_rmap(rmapp);
963                 return ret;
964         }
965
966         i = head = *rmapp & KVMPPC_RMAP_INDEX;
967         do {
968                 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
969                 j = rev[i].forw;
970
971                 /* If this HPTE isn't referenced, ignore it */
972                 if (!(hptep[1] & HPTE_R_R))
973                         continue;
974
975                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
976                         /* unlock rmap before spinning on the HPTE lock */
977                         unlock_rmap(rmapp);
978                         while (hptep[0] & HPTE_V_HVLOCK)
979                                 cpu_relax();
980                         goto retry;
981                 }
982
983                 /* Now check and modify the HPTE */
984                 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_R)) {
985                         kvmppc_clear_ref_hpte(kvm, hptep, i);
986                         if (!(rev[i].guest_rpte & HPTE_R_R)) {
987                                 rev[i].guest_rpte |= HPTE_R_R;
988                                 note_hpte_modification(kvm, &rev[i]);
989                         }
990                         ret = 1;
991                 }
992                 hptep[0] &= ~HPTE_V_HVLOCK;
993         } while ((i = j) != head);
994
995         unlock_rmap(rmapp);
996         return ret;
997 }
998
999 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1000 {
1001         if (!kvm->arch.using_mmu_notifiers)
1002                 return 0;
1003         return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
1004 }
1005
1006 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1007                               unsigned long gfn)
1008 {
1009         struct revmap_entry *rev = kvm->arch.revmap;
1010         unsigned long head, i, j;
1011         unsigned long *hp;
1012         int ret = 1;
1013
1014         if (*rmapp & KVMPPC_RMAP_REFERENCED)
1015                 return 1;
1016
1017         lock_rmap(rmapp);
1018         if (*rmapp & KVMPPC_RMAP_REFERENCED)
1019                 goto out;
1020
1021         if (*rmapp & KVMPPC_RMAP_PRESENT) {
1022                 i = head = *rmapp & KVMPPC_RMAP_INDEX;
1023                 do {
1024                         hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
1025                         j = rev[i].forw;
1026                         if (hp[1] & HPTE_R_R)
1027                                 goto out;
1028                 } while ((i = j) != head);
1029         }
1030         ret = 0;
1031
1032  out:
1033         unlock_rmap(rmapp);
1034         return ret;
1035 }
1036
1037 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1038 {
1039         if (!kvm->arch.using_mmu_notifiers)
1040                 return 0;
1041         return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
1042 }
1043
1044 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1045 {
1046         if (!kvm->arch.using_mmu_notifiers)
1047                 return;
1048         kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
1049 }
1050
1051 static int kvm_test_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1052 {
1053         struct revmap_entry *rev = kvm->arch.revmap;
1054         unsigned long head, i, j;
1055         unsigned long *hptep;
1056         int ret = 0;
1057
1058  retry:
1059         lock_rmap(rmapp);
1060         if (*rmapp & KVMPPC_RMAP_CHANGED) {
1061                 *rmapp &= ~KVMPPC_RMAP_CHANGED;
1062                 ret = 1;
1063         }
1064         if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1065                 unlock_rmap(rmapp);
1066                 return ret;
1067         }
1068
1069         i = head = *rmapp & KVMPPC_RMAP_INDEX;
1070         do {
1071                 hptep = (unsigned long *) (kvm->arch.hpt_virt + (i << 4));
1072                 j = rev[i].forw;
1073
1074                 if (!(hptep[1] & HPTE_R_C))
1075                         continue;
1076
1077                 if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1078                         /* unlock rmap before spinning on the HPTE lock */
1079                         unlock_rmap(rmapp);
1080                         while (hptep[0] & HPTE_V_HVLOCK)
1081                                 cpu_relax();
1082                         goto retry;
1083                 }
1084
1085                 /* Now check and modify the HPTE */
1086                 if ((hptep[0] & HPTE_V_VALID) && (hptep[1] & HPTE_R_C)) {
1087                         /* need to make it temporarily absent to clear C */
1088                         hptep[0] |= HPTE_V_ABSENT;
1089                         kvmppc_invalidate_hpte(kvm, hptep, i);
1090                         hptep[1] &= ~HPTE_R_C;
1091                         eieio();
1092                         hptep[0] = (hptep[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
1093                         if (!(rev[i].guest_rpte & HPTE_R_C)) {
1094                                 rev[i].guest_rpte |= HPTE_R_C;
1095                                 note_hpte_modification(kvm, &rev[i]);
1096                         }
1097                         ret = 1;
1098                 }
1099                 hptep[0] &= ~HPTE_V_HVLOCK;
1100         } while ((i = j) != head);
1101
1102         unlock_rmap(rmapp);
1103         return ret;
1104 }
1105
1106 static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1107                               struct kvm_memory_slot *memslot,
1108                               unsigned long *map)
1109 {
1110         unsigned long gfn;
1111
1112         if (!vpa->dirty || !vpa->pinned_addr)
1113                 return;
1114         gfn = vpa->gpa >> PAGE_SHIFT;
1115         if (gfn < memslot->base_gfn ||
1116             gfn >= memslot->base_gfn + memslot->npages)
1117                 return;
1118
1119         vpa->dirty = false;
1120         if (map)
1121                 __set_bit_le(gfn - memslot->base_gfn, map);
1122 }
1123
1124 long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1125                              unsigned long *map)
1126 {
1127         unsigned long i;
1128         unsigned long *rmapp;
1129         struct kvm_vcpu *vcpu;
1130
1131         preempt_disable();
1132         rmapp = memslot->arch.rmap;
1133         for (i = 0; i < memslot->npages; ++i) {
1134                 if (kvm_test_clear_dirty(kvm, rmapp) && map)
1135                         __set_bit_le(i, map);
1136                 ++rmapp;
1137         }
1138
1139         /* Harvest dirty bits from VPA and DTL updates */
1140         /* Note: we never modify the SLB shadow buffer areas */
1141         kvm_for_each_vcpu(i, vcpu, kvm) {
1142                 spin_lock(&vcpu->arch.vpa_update_lock);
1143                 harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1144                 harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1145                 spin_unlock(&vcpu->arch.vpa_update_lock);
1146         }
1147         preempt_enable();
1148         return 0;
1149 }
1150
1151 void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1152                             unsigned long *nb_ret)
1153 {
1154         struct kvm_memory_slot *memslot;
1155         unsigned long gfn = gpa >> PAGE_SHIFT;
1156         struct page *page, *pages[1];
1157         int npages;
1158         unsigned long hva, offset;
1159         unsigned long pa;
1160         unsigned long *physp;
1161         int srcu_idx;
1162
1163         srcu_idx = srcu_read_lock(&kvm->srcu);
1164         memslot = gfn_to_memslot(kvm, gfn);
1165         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1166                 goto err;
1167         if (!kvm->arch.using_mmu_notifiers) {
1168                 physp = memslot->arch.slot_phys;
1169                 if (!physp)
1170                         goto err;
1171                 physp += gfn - memslot->base_gfn;
1172                 pa = *physp;
1173                 if (!pa) {
1174                         if (kvmppc_get_guest_page(kvm, gfn, memslot,
1175                                                   PAGE_SIZE) < 0)
1176                                 goto err;
1177                         pa = *physp;
1178                 }
1179                 page = pfn_to_page(pa >> PAGE_SHIFT);
1180                 get_page(page);
1181         } else {
1182                 hva = gfn_to_hva_memslot(memslot, gfn);
1183                 npages = get_user_pages_fast(hva, 1, 1, pages);
1184                 if (npages < 1)
1185                         goto err;
1186                 page = pages[0];
1187         }
1188         srcu_read_unlock(&kvm->srcu, srcu_idx);
1189
1190         offset = gpa & (PAGE_SIZE - 1);
1191         if (nb_ret)
1192                 *nb_ret = PAGE_SIZE - offset;
1193         return page_address(page) + offset;
1194
1195  err:
1196         srcu_read_unlock(&kvm->srcu, srcu_idx);
1197         return NULL;
1198 }
1199
1200 void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1201                              bool dirty)
1202 {
1203         struct page *page = virt_to_page(va);
1204         struct kvm_memory_slot *memslot;
1205         unsigned long gfn;
1206         unsigned long *rmap;
1207         int srcu_idx;
1208
1209         put_page(page);
1210
1211         if (!dirty || !kvm->arch.using_mmu_notifiers)
1212                 return;
1213
1214         /* We need to mark this page dirty in the rmap chain */
1215         gfn = gpa >> PAGE_SHIFT;
1216         srcu_idx = srcu_read_lock(&kvm->srcu);
1217         memslot = gfn_to_memslot(kvm, gfn);
1218         if (memslot) {
1219                 rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1220                 lock_rmap(rmap);
1221                 *rmap |= KVMPPC_RMAP_CHANGED;
1222                 unlock_rmap(rmap);
1223         }
1224         srcu_read_unlock(&kvm->srcu, srcu_idx);
1225 }
1226
1227 /*
1228  * Functions for reading and writing the hash table via reads and
1229  * writes on a file descriptor.
1230  *
1231  * Reads return the guest view of the hash table, which has to be
1232  * pieced together from the real hash table and the guest_rpte
1233  * values in the revmap array.
1234  *
1235  * On writes, each HPTE written is considered in turn, and if it
1236  * is valid, it is written to the HPT as if an H_ENTER with the
1237  * exact flag set was done.  When the invalid count is non-zero
1238  * in the header written to the stream, the kernel will make
1239  * sure that that many HPTEs are invalid, and invalidate them
1240  * if not.
1241  */
1242
1243 struct kvm_htab_ctx {
1244         unsigned long   index;
1245         unsigned long   flags;
1246         struct kvm      *kvm;
1247         int             first_pass;
1248 };
1249
1250 #define HPTE_SIZE       (2 * sizeof(unsigned long))
1251
1252 /*
1253  * Returns 1 if this HPT entry has been modified or has pending
1254  * R/C bit changes.
1255  */
1256 static int hpte_dirty(struct revmap_entry *revp, unsigned long *hptp)
1257 {
1258         unsigned long rcbits_unset;
1259
1260         if (revp->guest_rpte & HPTE_GR_MODIFIED)
1261                 return 1;
1262
1263         /* Also need to consider changes in reference and changed bits */
1264         rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1265         if ((hptp[0] & HPTE_V_VALID) && (hptp[1] & rcbits_unset))
1266                 return 1;
1267
1268         return 0;
1269 }
1270
1271 static long record_hpte(unsigned long flags, unsigned long *hptp,
1272                         unsigned long *hpte, struct revmap_entry *revp,
1273                         int want_valid, int first_pass)
1274 {
1275         unsigned long v, r;
1276         unsigned long rcbits_unset;
1277         int ok = 1;
1278         int valid, dirty;
1279
1280         /* Unmodified entries are uninteresting except on the first pass */
1281         dirty = hpte_dirty(revp, hptp);
1282         if (!first_pass && !dirty)
1283                 return 0;
1284
1285         valid = 0;
1286         if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1287                 valid = 1;
1288                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1289                     !(hptp[0] & HPTE_V_BOLTED))
1290                         valid = 0;
1291         }
1292         if (valid != want_valid)
1293                 return 0;
1294
1295         v = r = 0;
1296         if (valid || dirty) {
1297                 /* lock the HPTE so it's stable and read it */
1298                 preempt_disable();
1299                 while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1300                         cpu_relax();
1301                 v = hptp[0];
1302
1303                 /* re-evaluate valid and dirty from synchronized HPTE value */
1304                 valid = !!(v & HPTE_V_VALID);
1305                 dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1306
1307                 /* Harvest R and C into guest view if necessary */
1308                 rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1309                 if (valid && (rcbits_unset & hptp[1])) {
1310                         revp->guest_rpte |= (hptp[1] & (HPTE_R_R | HPTE_R_C)) |
1311                                 HPTE_GR_MODIFIED;
1312                         dirty = 1;
1313                 }
1314
1315                 if (v & HPTE_V_ABSENT) {
1316                         v &= ~HPTE_V_ABSENT;
1317                         v |= HPTE_V_VALID;
1318                         valid = 1;
1319                 }
1320                 if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1321                         valid = 0;
1322
1323                 r = revp->guest_rpte;
1324                 /* only clear modified if this is the right sort of entry */
1325                 if (valid == want_valid && dirty) {
1326                         r &= ~HPTE_GR_MODIFIED;
1327                         revp->guest_rpte = r;
1328                 }
1329                 asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
1330                 hptp[0] &= ~HPTE_V_HVLOCK;
1331                 preempt_enable();
1332                 if (!(valid == want_valid && (first_pass || dirty)))
1333                         ok = 0;
1334         }
1335         hpte[0] = v;
1336         hpte[1] = r;
1337         return ok;
1338 }
1339
1340 static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1341                              size_t count, loff_t *ppos)
1342 {
1343         struct kvm_htab_ctx *ctx = file->private_data;
1344         struct kvm *kvm = ctx->kvm;
1345         struct kvm_get_htab_header hdr;
1346         unsigned long *hptp;
1347         struct revmap_entry *revp;
1348         unsigned long i, nb, nw;
1349         unsigned long __user *lbuf;
1350         struct kvm_get_htab_header __user *hptr;
1351         unsigned long flags;
1352         int first_pass;
1353         unsigned long hpte[2];
1354
1355         if (!access_ok(VERIFY_WRITE, buf, count))
1356                 return -EFAULT;
1357
1358         first_pass = ctx->first_pass;
1359         flags = ctx->flags;
1360
1361         i = ctx->index;
1362         hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1363         revp = kvm->arch.revmap + i;
1364         lbuf = (unsigned long __user *)buf;
1365
1366         nb = 0;
1367         while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1368                 /* Initialize header */
1369                 hptr = (struct kvm_get_htab_header __user *)buf;
1370                 hdr.n_valid = 0;
1371                 hdr.n_invalid = 0;
1372                 nw = nb;
1373                 nb += sizeof(hdr);
1374                 lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1375
1376                 /* Skip uninteresting entries, i.e. clean on not-first pass */
1377                 if (!first_pass) {
1378                         while (i < kvm->arch.hpt_npte &&
1379                                !hpte_dirty(revp, hptp)) {
1380                                 ++i;
1381                                 hptp += 2;
1382                                 ++revp;
1383                         }
1384                 }
1385                 hdr.index = i;
1386
1387                 /* Grab a series of valid entries */
1388                 while (i < kvm->arch.hpt_npte &&
1389                        hdr.n_valid < 0xffff &&
1390                        nb + HPTE_SIZE < count &&
1391                        record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1392                         /* valid entry, write it out */
1393                         ++hdr.n_valid;
1394                         if (__put_user(hpte[0], lbuf) ||
1395                             __put_user(hpte[1], lbuf + 1))
1396                                 return -EFAULT;
1397                         nb += HPTE_SIZE;
1398                         lbuf += 2;
1399                         ++i;
1400                         hptp += 2;
1401                         ++revp;
1402                 }
1403                 /* Now skip invalid entries while we can */
1404                 while (i < kvm->arch.hpt_npte &&
1405                        hdr.n_invalid < 0xffff &&
1406                        record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1407                         /* found an invalid entry */
1408                         ++hdr.n_invalid;
1409                         ++i;
1410                         hptp += 2;
1411                         ++revp;
1412                 }
1413
1414                 if (hdr.n_valid || hdr.n_invalid) {
1415                         /* write back the header */
1416                         if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1417                                 return -EFAULT;
1418                         nw = nb;
1419                         buf = (char __user *)lbuf;
1420                 } else {
1421                         nb = nw;
1422                 }
1423
1424                 /* Check if we've wrapped around the hash table */
1425                 if (i >= kvm->arch.hpt_npte) {
1426                         i = 0;
1427                         ctx->first_pass = 0;
1428                         break;
1429                 }
1430         }
1431
1432         ctx->index = i;
1433
1434         return nb;
1435 }
1436
1437 static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1438                               size_t count, loff_t *ppos)
1439 {
1440         struct kvm_htab_ctx *ctx = file->private_data;
1441         struct kvm *kvm = ctx->kvm;
1442         struct kvm_get_htab_header hdr;
1443         unsigned long i, j;
1444         unsigned long v, r;
1445         unsigned long __user *lbuf;
1446         unsigned long *hptp;
1447         unsigned long tmp[2];
1448         ssize_t nb;
1449         long int err, ret;
1450         int rma_setup;
1451
1452         if (!access_ok(VERIFY_READ, buf, count))
1453                 return -EFAULT;
1454
1455         /* lock out vcpus from running while we're doing this */
1456         mutex_lock(&kvm->lock);
1457         rma_setup = kvm->arch.rma_setup_done;
1458         if (rma_setup) {
1459                 kvm->arch.rma_setup_done = 0;   /* temporarily */
1460                 /* order rma_setup_done vs. vcpus_running */
1461                 smp_mb();
1462                 if (atomic_read(&kvm->arch.vcpus_running)) {
1463                         kvm->arch.rma_setup_done = 1;
1464                         mutex_unlock(&kvm->lock);
1465                         return -EBUSY;
1466                 }
1467         }
1468
1469         err = 0;
1470         for (nb = 0; nb + sizeof(hdr) <= count; ) {
1471                 err = -EFAULT;
1472                 if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1473                         break;
1474
1475                 err = 0;
1476                 if (nb + hdr.n_valid * HPTE_SIZE > count)
1477                         break;
1478
1479                 nb += sizeof(hdr);
1480                 buf += sizeof(hdr);
1481
1482                 err = -EINVAL;
1483                 i = hdr.index;
1484                 if (i >= kvm->arch.hpt_npte ||
1485                     i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1486                         break;
1487
1488                 hptp = (unsigned long *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1489                 lbuf = (unsigned long __user *)buf;
1490                 for (j = 0; j < hdr.n_valid; ++j) {
1491                         err = -EFAULT;
1492                         if (__get_user(v, lbuf) || __get_user(r, lbuf + 1))
1493                                 goto out;
1494                         err = -EINVAL;
1495                         if (!(v & HPTE_V_VALID))
1496                                 goto out;
1497                         lbuf += 2;
1498                         nb += HPTE_SIZE;
1499
1500                         if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1501                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1502                         err = -EIO;
1503                         ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1504                                                          tmp);
1505                         if (ret != H_SUCCESS) {
1506                                 pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1507                                        "r=%lx\n", ret, i, v, r);
1508                                 goto out;
1509                         }
1510                         if (!rma_setup && is_vrma_hpte(v)) {
1511                                 unsigned long psize = hpte_page_size(v, r);
1512                                 unsigned long senc = slb_pgsize_encoding(psize);
1513                                 unsigned long lpcr;
1514
1515                                 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1516                                         (VRMA_VSID << SLB_VSID_SHIFT_1T);
1517                                 lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
1518                                 lpcr |= senc << (LPCR_VRMASD_SH - 4);
1519                                 kvm->arch.lpcr = lpcr;
1520                                 rma_setup = 1;
1521                         }
1522                         ++i;
1523                         hptp += 2;
1524                 }
1525
1526                 for (j = 0; j < hdr.n_invalid; ++j) {
1527                         if (hptp[0] & (HPTE_V_VALID | HPTE_V_ABSENT))
1528                                 kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1529                         ++i;
1530                         hptp += 2;
1531                 }
1532                 err = 0;
1533         }
1534
1535  out:
1536         /* Order HPTE updates vs. rma_setup_done */
1537         smp_wmb();
1538         kvm->arch.rma_setup_done = rma_setup;
1539         mutex_unlock(&kvm->lock);
1540
1541         if (err)
1542                 return err;
1543         return nb;
1544 }
1545
1546 static int kvm_htab_release(struct inode *inode, struct file *filp)
1547 {
1548         struct kvm_htab_ctx *ctx = filp->private_data;
1549
1550         filp->private_data = NULL;
1551         if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1552                 atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1553         kvm_put_kvm(ctx->kvm);
1554         kfree(ctx);
1555         return 0;
1556 }
1557
1558 static const struct file_operations kvm_htab_fops = {
1559         .read           = kvm_htab_read,
1560         .write          = kvm_htab_write,
1561         .llseek         = default_llseek,
1562         .release        = kvm_htab_release,
1563 };
1564
1565 int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1566 {
1567         int ret;
1568         struct kvm_htab_ctx *ctx;
1569         int rwflag;
1570
1571         /* reject flags we don't recognize */
1572         if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1573                 return -EINVAL;
1574         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1575         if (!ctx)
1576                 return -ENOMEM;
1577         kvm_get_kvm(kvm);
1578         ctx->kvm = kvm;
1579         ctx->index = ghf->start_index;
1580         ctx->flags = ghf->flags;
1581         ctx->first_pass = 1;
1582
1583         rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1584         ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag);
1585         if (ret < 0) {
1586                 kvm_put_kvm(kvm);
1587                 return ret;
1588         }
1589
1590         if (rwflag == O_RDONLY) {
1591                 mutex_lock(&kvm->slots_lock);
1592                 atomic_inc(&kvm->arch.hpte_mod_interest);
1593                 /* make sure kvmppc_do_h_enter etc. see the increment */
1594                 synchronize_srcu_expedited(&kvm->srcu);
1595                 mutex_unlock(&kvm->slots_lock);
1596         }
1597
1598         return ret;
1599 }
1600
1601 void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1602 {
1603         struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1604
1605         if (cpu_has_feature(CPU_FTR_ARCH_206))
1606                 vcpu->arch.slb_nr = 32;         /* POWER7 */
1607         else
1608                 vcpu->arch.slb_nr = 64;
1609
1610         mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1611         mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1612
1613         vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1614 }