Merge remote-tracking branch 'asoc/fix/compress' into asoc-linus
[firefly-linux-kernel-4.4.55.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #endif
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 /*
78  * Make sure the floating-point register state in the
79  * the thread_struct is up to date for task tsk.
80  */
81 void flush_fp_to_thread(struct task_struct *tsk)
82 {
83         if (tsk->thread.regs) {
84                 /*
85                  * We need to disable preemption here because if we didn't,
86                  * another process could get scheduled after the regs->msr
87                  * test but before we have finished saving the FP registers
88                  * to the thread_struct.  That process could take over the
89                  * FPU, and then when we get scheduled again we would store
90                  * bogus values for the remaining FP registers.
91                  */
92                 preempt_disable();
93                 if (tsk->thread.regs->msr & MSR_FP) {
94 #ifdef CONFIG_SMP
95                         /*
96                          * This should only ever be called for current or
97                          * for a stopped child process.  Since we save away
98                          * the FP register state on context switch on SMP,
99                          * there is something wrong if a stopped child appears
100                          * to still have its FP state in the CPU registers.
101                          */
102                         BUG_ON(tsk != current);
103 #endif
104                         giveup_fpu(tsk);
105                 }
106                 preempt_enable();
107         }
108 }
109 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
110
111 void enable_kernel_fp(void)
112 {
113         WARN_ON(preemptible());
114
115 #ifdef CONFIG_SMP
116         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
117                 giveup_fpu(current);
118         else
119                 giveup_fpu(NULL);       /* just enables FP for kernel */
120 #else
121         giveup_fpu(last_task_used_math);
122 #endif /* CONFIG_SMP */
123 }
124 EXPORT_SYMBOL(enable_kernel_fp);
125
126 #ifdef CONFIG_ALTIVEC
127 void enable_kernel_altivec(void)
128 {
129         WARN_ON(preemptible());
130
131 #ifdef CONFIG_SMP
132         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
133                 giveup_altivec(current);
134         else
135                 giveup_altivec_notask();
136 #else
137         giveup_altivec(last_task_used_altivec);
138 #endif /* CONFIG_SMP */
139 }
140 EXPORT_SYMBOL(enable_kernel_altivec);
141
142 /*
143  * Make sure the VMX/Altivec register state in the
144  * the thread_struct is up to date for task tsk.
145  */
146 void flush_altivec_to_thread(struct task_struct *tsk)
147 {
148         if (tsk->thread.regs) {
149                 preempt_disable();
150                 if (tsk->thread.regs->msr & MSR_VEC) {
151 #ifdef CONFIG_SMP
152                         BUG_ON(tsk != current);
153 #endif
154                         giveup_altivec(tsk);
155                 }
156                 preempt_enable();
157         }
158 }
159 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
160 #endif /* CONFIG_ALTIVEC */
161
162 #ifdef CONFIG_VSX
163 #if 0
164 /* not currently used, but some crazy RAID module might want to later */
165 void enable_kernel_vsx(void)
166 {
167         WARN_ON(preemptible());
168
169 #ifdef CONFIG_SMP
170         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
171                 giveup_vsx(current);
172         else
173                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
174 #else
175         giveup_vsx(last_task_used_vsx);
176 #endif /* CONFIG_SMP */
177 }
178 EXPORT_SYMBOL(enable_kernel_vsx);
179 #endif
180
181 void giveup_vsx(struct task_struct *tsk)
182 {
183         giveup_fpu(tsk);
184         giveup_altivec(tsk);
185         __giveup_vsx(tsk);
186 }
187
188 void flush_vsx_to_thread(struct task_struct *tsk)
189 {
190         if (tsk->thread.regs) {
191                 preempt_disable();
192                 if (tsk->thread.regs->msr & MSR_VSX) {
193 #ifdef CONFIG_SMP
194                         BUG_ON(tsk != current);
195 #endif
196                         giveup_vsx(tsk);
197                 }
198                 preempt_enable();
199         }
200 }
201 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
202 #endif /* CONFIG_VSX */
203
204 #ifdef CONFIG_SPE
205
206 void enable_kernel_spe(void)
207 {
208         WARN_ON(preemptible());
209
210 #ifdef CONFIG_SMP
211         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
212                 giveup_spe(current);
213         else
214                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
215 #else
216         giveup_spe(last_task_used_spe);
217 #endif /* __SMP __ */
218 }
219 EXPORT_SYMBOL(enable_kernel_spe);
220
221 void flush_spe_to_thread(struct task_struct *tsk)
222 {
223         if (tsk->thread.regs) {
224                 preempt_disable();
225                 if (tsk->thread.regs->msr & MSR_SPE) {
226 #ifdef CONFIG_SMP
227                         BUG_ON(tsk != current);
228 #endif
229                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
230                         giveup_spe(tsk);
231                 }
232                 preempt_enable();
233         }
234 }
235 #endif /* CONFIG_SPE */
236
237 #ifndef CONFIG_SMP
238 /*
239  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
240  * and the current task has some state, discard it.
241  */
242 void discard_lazy_cpu_state(void)
243 {
244         preempt_disable();
245         if (last_task_used_math == current)
246                 last_task_used_math = NULL;
247 #ifdef CONFIG_ALTIVEC
248         if (last_task_used_altivec == current)
249                 last_task_used_altivec = NULL;
250 #endif /* CONFIG_ALTIVEC */
251 #ifdef CONFIG_VSX
252         if (last_task_used_vsx == current)
253                 last_task_used_vsx = NULL;
254 #endif /* CONFIG_VSX */
255 #ifdef CONFIG_SPE
256         if (last_task_used_spe == current)
257                 last_task_used_spe = NULL;
258 #endif
259         preempt_enable();
260 }
261 #endif /* CONFIG_SMP */
262
263 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
264 void do_send_trap(struct pt_regs *regs, unsigned long address,
265                   unsigned long error_code, int signal_code, int breakpt)
266 {
267         siginfo_t info;
268
269         current->thread.trap_nr = signal_code;
270         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
271                         11, SIGSEGV) == NOTIFY_STOP)
272                 return;
273
274         /* Deliver the signal to userspace */
275         info.si_signo = SIGTRAP;
276         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
277         info.si_code = signal_code;
278         info.si_addr = (void __user *)address;
279         force_sig_info(SIGTRAP, &info, current);
280 }
281 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
282 void do_break (struct pt_regs *regs, unsigned long address,
283                     unsigned long error_code)
284 {
285         siginfo_t info;
286
287         current->thread.trap_nr = TRAP_HWBKPT;
288         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
289                         11, SIGSEGV) == NOTIFY_STOP)
290                 return;
291
292         if (debugger_break_match(regs))
293                 return;
294
295         /* Clear the breakpoint */
296         hw_breakpoint_disable();
297
298         /* Deliver the signal to userspace */
299         info.si_signo = SIGTRAP;
300         info.si_errno = 0;
301         info.si_code = TRAP_HWBKPT;
302         info.si_addr = (void __user *)address;
303         force_sig_info(SIGTRAP, &info, current);
304 }
305 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
306
307 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
308
309 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
310 /*
311  * Set the debug registers back to their default "safe" values.
312  */
313 static void set_debug_reg_defaults(struct thread_struct *thread)
314 {
315         thread->iac1 = thread->iac2 = 0;
316 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
317         thread->iac3 = thread->iac4 = 0;
318 #endif
319         thread->dac1 = thread->dac2 = 0;
320 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
321         thread->dvc1 = thread->dvc2 = 0;
322 #endif
323         thread->dbcr0 = 0;
324 #ifdef CONFIG_BOOKE
325         /*
326          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
327          */
328         thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |   \
329                         DBCR1_IAC3US | DBCR1_IAC4US;
330         /*
331          * Force Data Address Compare User/Supervisor bits to be User-only
332          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
333          */
334         thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
335 #else
336         thread->dbcr1 = 0;
337 #endif
338 }
339
340 static void prime_debug_regs(struct thread_struct *thread)
341 {
342         /*
343          * We could have inherited MSR_DE from userspace, since
344          * it doesn't get cleared on exception entry.  Make sure
345          * MSR_DE is clear before we enable any debug events.
346          */
347         mtmsr(mfmsr() & ~MSR_DE);
348
349         mtspr(SPRN_IAC1, thread->iac1);
350         mtspr(SPRN_IAC2, thread->iac2);
351 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
352         mtspr(SPRN_IAC3, thread->iac3);
353         mtspr(SPRN_IAC4, thread->iac4);
354 #endif
355         mtspr(SPRN_DAC1, thread->dac1);
356         mtspr(SPRN_DAC2, thread->dac2);
357 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
358         mtspr(SPRN_DVC1, thread->dvc1);
359         mtspr(SPRN_DVC2, thread->dvc2);
360 #endif
361         mtspr(SPRN_DBCR0, thread->dbcr0);
362         mtspr(SPRN_DBCR1, thread->dbcr1);
363 #ifdef CONFIG_BOOKE
364         mtspr(SPRN_DBCR2, thread->dbcr2);
365 #endif
366 }
367 /*
368  * Unless neither the old or new thread are making use of the
369  * debug registers, set the debug registers from the values
370  * stored in the new thread.
371  */
372 static void switch_booke_debug_regs(struct thread_struct *new_thread)
373 {
374         if ((current->thread.dbcr0 & DBCR0_IDM)
375                 || (new_thread->dbcr0 & DBCR0_IDM))
376                         prime_debug_regs(new_thread);
377 }
378 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
379 #ifndef CONFIG_HAVE_HW_BREAKPOINT
380 static void set_debug_reg_defaults(struct thread_struct *thread)
381 {
382         thread->hw_brk.address = 0;
383         thread->hw_brk.type = 0;
384         set_breakpoint(&thread->hw_brk);
385 }
386 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
387 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
388
389 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
390 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
391 {
392         mtspr(SPRN_DAC1, dabr);
393 #ifdef CONFIG_PPC_47x
394         isync();
395 #endif
396         return 0;
397 }
398 #elif defined(CONFIG_PPC_BOOK3S)
399 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
400 {
401         mtspr(SPRN_DABR, dabr);
402         mtspr(SPRN_DABRX, dabrx);
403         return 0;
404 }
405 #else
406 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
407 {
408         return -EINVAL;
409 }
410 #endif
411
412 static inline int set_dabr(struct arch_hw_breakpoint *brk)
413 {
414         unsigned long dabr, dabrx;
415
416         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
417         dabrx = ((brk->type >> 3) & 0x7);
418
419         if (ppc_md.set_dabr)
420                 return ppc_md.set_dabr(dabr, dabrx);
421
422         return __set_dabr(dabr, dabrx);
423 }
424
425 static inline int set_dawr(struct arch_hw_breakpoint *brk)
426 {
427         unsigned long dawr, dawrx, mrd;
428
429         dawr = brk->address;
430
431         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
432                                    << (63 - 58); //* read/write bits */
433         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
434                                    << (63 - 59); //* translate */
435         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
436                                    >> 3; //* PRIM bits */
437         /* dawr length is stored in field MDR bits 48:53.  Matches range in
438            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
439            0b111111=64DW.
440            brk->len is in bytes.
441            This aligns up to double word size, shifts and does the bias.
442         */
443         mrd = ((brk->len + 7) >> 3) - 1;
444         dawrx |= (mrd & 0x3f) << (63 - 53);
445
446         if (ppc_md.set_dawr)
447                 return ppc_md.set_dawr(dawr, dawrx);
448         mtspr(SPRN_DAWR, dawr);
449         mtspr(SPRN_DAWRX, dawrx);
450         return 0;
451 }
452
453 int set_breakpoint(struct arch_hw_breakpoint *brk)
454 {
455         __get_cpu_var(current_brk) = *brk;
456
457         if (cpu_has_feature(CPU_FTR_DAWR))
458                 return set_dawr(brk);
459
460         return set_dabr(brk);
461 }
462
463 #ifdef CONFIG_PPC64
464 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
465 #endif
466
467 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
468                               struct arch_hw_breakpoint *b)
469 {
470         if (a->address != b->address)
471                 return false;
472         if (a->type != b->type)
473                 return false;
474         if (a->len != b->len)
475                 return false;
476         return true;
477 }
478 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
479 static inline void tm_reclaim_task(struct task_struct *tsk)
480 {
481         /* We have to work out if we're switching from/to a task that's in the
482          * middle of a transaction.
483          *
484          * In switching we need to maintain a 2nd register state as
485          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
486          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
487          * (current) FPRs into oldtask->thread.transact_fpr[].
488          *
489          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
490          */
491         struct thread_struct *thr = &tsk->thread;
492
493         if (!thr->regs)
494                 return;
495
496         if (!MSR_TM_ACTIVE(thr->regs->msr))
497                 goto out_and_saveregs;
498
499         /* Stash the original thread MSR, as giveup_fpu et al will
500          * modify it.  We hold onto it to see whether the task used
501          * FP & vector regs.
502          */
503         thr->tm_orig_msr = thr->regs->msr;
504
505         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
506                  "ccr=%lx, msr=%lx, trap=%lx)\n",
507                  tsk->pid, thr->regs->nip,
508                  thr->regs->ccr, thr->regs->msr,
509                  thr->regs->trap);
510
511         tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED);
512
513         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
514                  tsk->pid);
515
516 out_and_saveregs:
517         /* Always save the regs here, even if a transaction's not active.
518          * This context-switches a thread's TM info SPRs.  We do it here to
519          * be consistent with the restore path (in recheckpoint) which
520          * cannot happen later in _switch().
521          */
522         tm_save_sprs(thr);
523 }
524
525 static inline void tm_recheckpoint_new_task(struct task_struct *new)
526 {
527         unsigned long msr;
528
529         if (!cpu_has_feature(CPU_FTR_TM))
530                 return;
531
532         /* Recheckpoint the registers of the thread we're about to switch to.
533          *
534          * If the task was using FP, we non-lazily reload both the original and
535          * the speculative FP register states.  This is because the kernel
536          * doesn't see if/when a TM rollback occurs, so if we take an FP
537          * unavoidable later, we are unable to determine which set of FP regs
538          * need to be restored.
539          */
540         if (!new->thread.regs)
541                 return;
542
543         /* The TM SPRs are restored here, so that TEXASR.FS can be set
544          * before the trecheckpoint and no explosion occurs.
545          */
546         tm_restore_sprs(&new->thread);
547
548         if (!MSR_TM_ACTIVE(new->thread.regs->msr))
549                 return;
550         msr = new->thread.tm_orig_msr;
551         /* Recheckpoint to restore original checkpointed register state. */
552         TM_DEBUG("*** tm_recheckpoint of pid %d "
553                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
554                  new->pid, new->thread.regs->msr, msr);
555
556         /* This loads the checkpointed FP/VEC state, if used */
557         tm_recheckpoint(&new->thread, msr);
558
559         /* This loads the speculative FP/VEC state, if used */
560         if (msr & MSR_FP) {
561                 do_load_up_transact_fpu(&new->thread);
562                 new->thread.regs->msr |=
563                         (MSR_FP | new->thread.fpexc_mode);
564         }
565 #ifdef CONFIG_ALTIVEC
566         if (msr & MSR_VEC) {
567                 do_load_up_transact_altivec(&new->thread);
568                 new->thread.regs->msr |= MSR_VEC;
569         }
570 #endif
571         /* We may as well turn on VSX too since all the state is restored now */
572         if (msr & MSR_VSX)
573                 new->thread.regs->msr |= MSR_VSX;
574
575         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
576                  "(kernel msr 0x%lx)\n",
577                  new->pid, mfmsr());
578 }
579
580 static inline void __switch_to_tm(struct task_struct *prev)
581 {
582         if (cpu_has_feature(CPU_FTR_TM)) {
583                 tm_enable();
584                 tm_reclaim_task(prev);
585         }
586 }
587 #else
588 #define tm_recheckpoint_new_task(new)
589 #define __switch_to_tm(prev)
590 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
591
592 struct task_struct *__switch_to(struct task_struct *prev,
593         struct task_struct *new)
594 {
595         struct thread_struct *new_thread, *old_thread;
596         unsigned long flags;
597         struct task_struct *last;
598 #ifdef CONFIG_PPC_BOOK3S_64
599         struct ppc64_tlb_batch *batch;
600 #endif
601
602         __switch_to_tm(prev);
603
604 #ifdef CONFIG_SMP
605         /* avoid complexity of lazy save/restore of fpu
606          * by just saving it every time we switch out if
607          * this task used the fpu during the last quantum.
608          *
609          * If it tries to use the fpu again, it'll trap and
610          * reload its fp regs.  So we don't have to do a restore
611          * every switch, just a save.
612          *  -- Cort
613          */
614         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
615                 giveup_fpu(prev);
616 #ifdef CONFIG_ALTIVEC
617         /*
618          * If the previous thread used altivec in the last quantum
619          * (thus changing altivec regs) then save them.
620          * We used to check the VRSAVE register but not all apps
621          * set it, so we don't rely on it now (and in fact we need
622          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
623          *
624          * On SMP we always save/restore altivec regs just to avoid the
625          * complexity of changing processors.
626          *  -- Cort
627          */
628         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
629                 giveup_altivec(prev);
630 #endif /* CONFIG_ALTIVEC */
631 #ifdef CONFIG_VSX
632         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
633                 /* VMX and FPU registers are already save here */
634                 __giveup_vsx(prev);
635 #endif /* CONFIG_VSX */
636 #ifdef CONFIG_SPE
637         /*
638          * If the previous thread used spe in the last quantum
639          * (thus changing spe regs) then save them.
640          *
641          * On SMP we always save/restore spe regs just to avoid the
642          * complexity of changing processors.
643          */
644         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
645                 giveup_spe(prev);
646 #endif /* CONFIG_SPE */
647
648 #else  /* CONFIG_SMP */
649 #ifdef CONFIG_ALTIVEC
650         /* Avoid the trap.  On smp this this never happens since
651          * we don't set last_task_used_altivec -- Cort
652          */
653         if (new->thread.regs && last_task_used_altivec == new)
654                 new->thread.regs->msr |= MSR_VEC;
655 #endif /* CONFIG_ALTIVEC */
656 #ifdef CONFIG_VSX
657         if (new->thread.regs && last_task_used_vsx == new)
658                 new->thread.regs->msr |= MSR_VSX;
659 #endif /* CONFIG_VSX */
660 #ifdef CONFIG_SPE
661         /* Avoid the trap.  On smp this this never happens since
662          * we don't set last_task_used_spe
663          */
664         if (new->thread.regs && last_task_used_spe == new)
665                 new->thread.regs->msr |= MSR_SPE;
666 #endif /* CONFIG_SPE */
667
668 #endif /* CONFIG_SMP */
669
670 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
671         switch_booke_debug_regs(&new->thread);
672 #else
673 /*
674  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
675  * schedule DABR
676  */
677 #ifndef CONFIG_HAVE_HW_BREAKPOINT
678         if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
679                 set_breakpoint(&new->thread.hw_brk);
680 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
681 #endif
682
683
684         new_thread = &new->thread;
685         old_thread = &current->thread;
686
687 #ifdef CONFIG_PPC64
688         /*
689          * Collect processor utilization data per process
690          */
691         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
692                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
693                 long unsigned start_tb, current_tb;
694                 start_tb = old_thread->start_tb;
695                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
696                 old_thread->accum_tb += (current_tb - start_tb);
697                 new_thread->start_tb = current_tb;
698         }
699 #endif /* CONFIG_PPC64 */
700
701 #ifdef CONFIG_PPC_BOOK3S_64
702         batch = &__get_cpu_var(ppc64_tlb_batch);
703         if (batch->active) {
704                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
705                 if (batch->index)
706                         __flush_tlb_pending(batch);
707                 batch->active = 0;
708         }
709 #endif /* CONFIG_PPC_BOOK3S_64 */
710
711         local_irq_save(flags);
712
713         /*
714          * We can't take a PMU exception inside _switch() since there is a
715          * window where the kernel stack SLB and the kernel stack are out
716          * of sync. Hard disable here.
717          */
718         hard_irq_disable();
719
720         tm_recheckpoint_new_task(new);
721
722         last = _switch(old_thread, new_thread);
723
724 #ifdef CONFIG_PPC_BOOK3S_64
725         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
726                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
727                 batch = &__get_cpu_var(ppc64_tlb_batch);
728                 batch->active = 1;
729         }
730 #endif /* CONFIG_PPC_BOOK3S_64 */
731
732         local_irq_restore(flags);
733
734         return last;
735 }
736
737 static int instructions_to_print = 16;
738
739 static void show_instructions(struct pt_regs *regs)
740 {
741         int i;
742         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
743                         sizeof(int));
744
745         printk("Instruction dump:");
746
747         for (i = 0; i < instructions_to_print; i++) {
748                 int instr;
749
750                 if (!(i % 8))
751                         printk("\n");
752
753 #if !defined(CONFIG_BOOKE)
754                 /* If executing with the IMMU off, adjust pc rather
755                  * than print XXXXXXXX.
756                  */
757                 if (!(regs->msr & MSR_IR))
758                         pc = (unsigned long)phys_to_virt(pc);
759 #endif
760
761                 /* We use __get_user here *only* to avoid an OOPS on a
762                  * bad address because the pc *should* only be a
763                  * kernel address.
764                  */
765                 if (!__kernel_text_address(pc) ||
766                      __get_user(instr, (unsigned int __user *)pc)) {
767                         printk(KERN_CONT "XXXXXXXX ");
768                 } else {
769                         if (regs->nip == pc)
770                                 printk(KERN_CONT "<%08x> ", instr);
771                         else
772                                 printk(KERN_CONT "%08x ", instr);
773                 }
774
775                 pc += sizeof(int);
776         }
777
778         printk("\n");
779 }
780
781 static struct regbit {
782         unsigned long bit;
783         const char *name;
784 } msr_bits[] = {
785 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
786         {MSR_SF,        "SF"},
787         {MSR_HV,        "HV"},
788 #endif
789         {MSR_VEC,       "VEC"},
790         {MSR_VSX,       "VSX"},
791 #ifdef CONFIG_BOOKE
792         {MSR_CE,        "CE"},
793 #endif
794         {MSR_EE,        "EE"},
795         {MSR_PR,        "PR"},
796         {MSR_FP,        "FP"},
797         {MSR_ME,        "ME"},
798 #ifdef CONFIG_BOOKE
799         {MSR_DE,        "DE"},
800 #else
801         {MSR_SE,        "SE"},
802         {MSR_BE,        "BE"},
803 #endif
804         {MSR_IR,        "IR"},
805         {MSR_DR,        "DR"},
806         {MSR_PMM,       "PMM"},
807 #ifndef CONFIG_BOOKE
808         {MSR_RI,        "RI"},
809         {MSR_LE,        "LE"},
810 #endif
811         {0,             NULL}
812 };
813
814 static void printbits(unsigned long val, struct regbit *bits)
815 {
816         const char *sep = "";
817
818         printk("<");
819         for (; bits->bit; ++bits)
820                 if (val & bits->bit) {
821                         printk("%s%s", sep, bits->name);
822                         sep = ",";
823                 }
824         printk(">");
825 }
826
827 #ifdef CONFIG_PPC64
828 #define REG             "%016lx"
829 #define REGS_PER_LINE   4
830 #define LAST_VOLATILE   13
831 #else
832 #define REG             "%08lx"
833 #define REGS_PER_LINE   8
834 #define LAST_VOLATILE   12
835 #endif
836
837 void show_regs(struct pt_regs * regs)
838 {
839         int i, trap;
840
841         show_regs_print_info(KERN_DEFAULT);
842
843         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
844                regs->nip, regs->link, regs->ctr);
845         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
846                regs, regs->trap, print_tainted(), init_utsname()->release);
847         printk("MSR: "REG" ", regs->msr);
848         printbits(regs->msr, msr_bits);
849         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
850 #ifdef CONFIG_PPC64
851         printk("SOFTE: %ld\n", regs->softe);
852 #endif
853         trap = TRAP(regs);
854         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
855                 printk("CFAR: "REG"\n", regs->orig_gpr3);
856         if (trap == 0x300 || trap == 0x600)
857 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
858                 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
859 #else
860                 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
861 #endif
862
863         for (i = 0;  i < 32;  i++) {
864                 if ((i % REGS_PER_LINE) == 0)
865                         printk("\nGPR%02d: ", i);
866                 printk(REG " ", regs->gpr[i]);
867                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
868                         break;
869         }
870         printk("\n");
871 #ifdef CONFIG_KALLSYMS
872         /*
873          * Lookup NIP late so we have the best change of getting the
874          * above info out without failing
875          */
876         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
877         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
878 #endif
879 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
880         printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch);
881 #endif
882         show_stack(current, (unsigned long *) regs->gpr[1]);
883         if (!user_mode(regs))
884                 show_instructions(regs);
885 }
886
887 void exit_thread(void)
888 {
889         discard_lazy_cpu_state();
890 }
891
892 void flush_thread(void)
893 {
894         discard_lazy_cpu_state();
895
896 #ifdef CONFIG_HAVE_HW_BREAKPOINT
897         flush_ptrace_hw_breakpoint(current);
898 #else /* CONFIG_HAVE_HW_BREAKPOINT */
899         set_debug_reg_defaults(&current->thread);
900 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
901 }
902
903 void
904 release_thread(struct task_struct *t)
905 {
906 }
907
908 /*
909  * this gets called so that we can store coprocessor state into memory and
910  * copy the current task into the new thread.
911  */
912 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
913 {
914         flush_fp_to_thread(src);
915         flush_altivec_to_thread(src);
916         flush_vsx_to_thread(src);
917         flush_spe_to_thread(src);
918         *dst = *src;
919         return 0;
920 }
921
922 /*
923  * Copy a thread..
924  */
925 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
926
927 int copy_thread(unsigned long clone_flags, unsigned long usp,
928                 unsigned long arg, struct task_struct *p)
929 {
930         struct pt_regs *childregs, *kregs;
931         extern void ret_from_fork(void);
932         extern void ret_from_kernel_thread(void);
933         void (*f)(void);
934         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
935
936         /* Copy registers */
937         sp -= sizeof(struct pt_regs);
938         childregs = (struct pt_regs *) sp;
939         if (unlikely(p->flags & PF_KTHREAD)) {
940                 struct thread_info *ti = (void *)task_stack_page(p);
941                 memset(childregs, 0, sizeof(struct pt_regs));
942                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
943                 childregs->gpr[14] = usp;       /* function */
944 #ifdef CONFIG_PPC64
945                 clear_tsk_thread_flag(p, TIF_32BIT);
946                 childregs->softe = 1;
947 #endif
948                 childregs->gpr[15] = arg;
949                 p->thread.regs = NULL;  /* no user register state */
950                 ti->flags |= _TIF_RESTOREALL;
951                 f = ret_from_kernel_thread;
952         } else {
953                 struct pt_regs *regs = current_pt_regs();
954                 CHECK_FULL_REGS(regs);
955                 *childregs = *regs;
956                 if (usp)
957                         childregs->gpr[1] = usp;
958                 p->thread.regs = childregs;
959                 childregs->gpr[3] = 0;  /* Result from fork() */
960                 if (clone_flags & CLONE_SETTLS) {
961 #ifdef CONFIG_PPC64
962                         if (!is_32bit_task())
963                                 childregs->gpr[13] = childregs->gpr[6];
964                         else
965 #endif
966                                 childregs->gpr[2] = childregs->gpr[6];
967                 }
968
969                 f = ret_from_fork;
970         }
971         sp -= STACK_FRAME_OVERHEAD;
972
973         /*
974          * The way this works is that at some point in the future
975          * some task will call _switch to switch to the new task.
976          * That will pop off the stack frame created below and start
977          * the new task running at ret_from_fork.  The new task will
978          * do some house keeping and then return from the fork or clone
979          * system call, using the stack frame created above.
980          */
981         ((unsigned long *)sp)[0] = 0;
982         sp -= sizeof(struct pt_regs);
983         kregs = (struct pt_regs *) sp;
984         sp -= STACK_FRAME_OVERHEAD;
985         p->thread.ksp = sp;
986         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
987                                 _ALIGN_UP(sizeof(struct thread_info), 16);
988
989 #ifdef CONFIG_HAVE_HW_BREAKPOINT
990         p->thread.ptrace_bps[0] = NULL;
991 #endif
992
993 #ifdef CONFIG_PPC_STD_MMU_64
994         if (mmu_has_feature(MMU_FTR_SLB)) {
995                 unsigned long sp_vsid;
996                 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
997
998                 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
999                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1000                                 << SLB_VSID_SHIFT_1T;
1001                 else
1002                         sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1003                                 << SLB_VSID_SHIFT;
1004                 sp_vsid |= SLB_VSID_KERNEL | llp;
1005                 p->thread.ksp_vsid = sp_vsid;
1006         }
1007 #endif /* CONFIG_PPC_STD_MMU_64 */
1008 #ifdef CONFIG_PPC64 
1009         if (cpu_has_feature(CPU_FTR_DSCR)) {
1010                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1011                 p->thread.dscr = current->thread.dscr;
1012         }
1013         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1014                 p->thread.ppr = INIT_PPR;
1015 #endif
1016         /*
1017          * The PPC64 ABI makes use of a TOC to contain function 
1018          * pointers.  The function (ret_from_except) is actually a pointer
1019          * to the TOC entry.  The first entry is a pointer to the actual
1020          * function.
1021          */
1022 #ifdef CONFIG_PPC64
1023         kregs->nip = *((unsigned long *)f);
1024 #else
1025         kregs->nip = (unsigned long)f;
1026 #endif
1027         return 0;
1028 }
1029
1030 /*
1031  * Set up a thread for executing a new program
1032  */
1033 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1034 {
1035 #ifdef CONFIG_PPC64
1036         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1037 #endif
1038
1039         /*
1040          * If we exec out of a kernel thread then thread.regs will not be
1041          * set.  Do it now.
1042          */
1043         if (!current->thread.regs) {
1044                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1045                 current->thread.regs = regs - 1;
1046         }
1047
1048         memset(regs->gpr, 0, sizeof(regs->gpr));
1049         regs->ctr = 0;
1050         regs->link = 0;
1051         regs->xer = 0;
1052         regs->ccr = 0;
1053         regs->gpr[1] = sp;
1054
1055         /*
1056          * We have just cleared all the nonvolatile GPRs, so make
1057          * FULL_REGS(regs) return true.  This is necessary to allow
1058          * ptrace to examine the thread immediately after exec.
1059          */
1060         regs->trap &= ~1UL;
1061
1062 #ifdef CONFIG_PPC32
1063         regs->mq = 0;
1064         regs->nip = start;
1065         regs->msr = MSR_USER;
1066 #else
1067         if (!is_32bit_task()) {
1068                 unsigned long entry, toc;
1069
1070                 /* start is a relocated pointer to the function descriptor for
1071                  * the elf _start routine.  The first entry in the function
1072                  * descriptor is the entry address of _start and the second
1073                  * entry is the TOC value we need to use.
1074                  */
1075                 __get_user(entry, (unsigned long __user *)start);
1076                 __get_user(toc, (unsigned long __user *)start+1);
1077
1078                 /* Check whether the e_entry function descriptor entries
1079                  * need to be relocated before we can use them.
1080                  */
1081                 if (load_addr != 0) {
1082                         entry += load_addr;
1083                         toc   += load_addr;
1084                 }
1085                 regs->nip = entry;
1086                 regs->gpr[2] = toc;
1087                 regs->msr = MSR_USER64;
1088         } else {
1089                 regs->nip = start;
1090                 regs->gpr[2] = 0;
1091                 regs->msr = MSR_USER32;
1092         }
1093 #endif
1094         discard_lazy_cpu_state();
1095 #ifdef CONFIG_VSX
1096         current->thread.used_vsr = 0;
1097 #endif
1098         memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
1099         current->thread.fpscr.val = 0;
1100 #ifdef CONFIG_ALTIVEC
1101         memset(current->thread.vr, 0, sizeof(current->thread.vr));
1102         memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
1103         current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
1104         current->thread.vrsave = 0;
1105         current->thread.used_vr = 0;
1106 #endif /* CONFIG_ALTIVEC */
1107 #ifdef CONFIG_SPE
1108         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1109         current->thread.acc = 0;
1110         current->thread.spefscr = 0;
1111         current->thread.used_spe = 0;
1112 #endif /* CONFIG_SPE */
1113 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1114         if (cpu_has_feature(CPU_FTR_TM))
1115                 regs->msr |= MSR_TM;
1116         current->thread.tm_tfhar = 0;
1117         current->thread.tm_texasr = 0;
1118         current->thread.tm_tfiar = 0;
1119 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1120 }
1121
1122 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1123                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1124
1125 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1126 {
1127         struct pt_regs *regs = tsk->thread.regs;
1128
1129         /* This is a bit hairy.  If we are an SPE enabled  processor
1130          * (have embedded fp) we store the IEEE exception enable flags in
1131          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1132          * mode (asyn, precise, disabled) for 'Classic' FP. */
1133         if (val & PR_FP_EXC_SW_ENABLE) {
1134 #ifdef CONFIG_SPE
1135                 if (cpu_has_feature(CPU_FTR_SPE)) {
1136                         tsk->thread.fpexc_mode = val &
1137                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1138                         return 0;
1139                 } else {
1140                         return -EINVAL;
1141                 }
1142 #else
1143                 return -EINVAL;
1144 #endif
1145         }
1146
1147         /* on a CONFIG_SPE this does not hurt us.  The bits that
1148          * __pack_fe01 use do not overlap with bits used for
1149          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1150          * on CONFIG_SPE implementations are reserved so writing to
1151          * them does not change anything */
1152         if (val > PR_FP_EXC_PRECISE)
1153                 return -EINVAL;
1154         tsk->thread.fpexc_mode = __pack_fe01(val);
1155         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1156                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1157                         | tsk->thread.fpexc_mode;
1158         return 0;
1159 }
1160
1161 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1162 {
1163         unsigned int val;
1164
1165         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1166 #ifdef CONFIG_SPE
1167                 if (cpu_has_feature(CPU_FTR_SPE))
1168                         val = tsk->thread.fpexc_mode;
1169                 else
1170                         return -EINVAL;
1171 #else
1172                 return -EINVAL;
1173 #endif
1174         else
1175                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1176         return put_user(val, (unsigned int __user *) adr);
1177 }
1178
1179 int set_endian(struct task_struct *tsk, unsigned int val)
1180 {
1181         struct pt_regs *regs = tsk->thread.regs;
1182
1183         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1184             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1185                 return -EINVAL;
1186
1187         if (regs == NULL)
1188                 return -EINVAL;
1189
1190         if (val == PR_ENDIAN_BIG)
1191                 regs->msr &= ~MSR_LE;
1192         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1193                 regs->msr |= MSR_LE;
1194         else
1195                 return -EINVAL;
1196
1197         return 0;
1198 }
1199
1200 int get_endian(struct task_struct *tsk, unsigned long adr)
1201 {
1202         struct pt_regs *regs = tsk->thread.regs;
1203         unsigned int val;
1204
1205         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1206             !cpu_has_feature(CPU_FTR_REAL_LE))
1207                 return -EINVAL;
1208
1209         if (regs == NULL)
1210                 return -EINVAL;
1211
1212         if (regs->msr & MSR_LE) {
1213                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1214                         val = PR_ENDIAN_LITTLE;
1215                 else
1216                         val = PR_ENDIAN_PPC_LITTLE;
1217         } else
1218                 val = PR_ENDIAN_BIG;
1219
1220         return put_user(val, (unsigned int __user *)adr);
1221 }
1222
1223 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1224 {
1225         tsk->thread.align_ctl = val;
1226         return 0;
1227 }
1228
1229 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1230 {
1231         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1232 }
1233
1234 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1235                                   unsigned long nbytes)
1236 {
1237         unsigned long stack_page;
1238         unsigned long cpu = task_cpu(p);
1239
1240         /*
1241          * Avoid crashing if the stack has overflowed and corrupted
1242          * task_cpu(p), which is in the thread_info struct.
1243          */
1244         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1245                 stack_page = (unsigned long) hardirq_ctx[cpu];
1246                 if (sp >= stack_page + sizeof(struct thread_struct)
1247                     && sp <= stack_page + THREAD_SIZE - nbytes)
1248                         return 1;
1249
1250                 stack_page = (unsigned long) softirq_ctx[cpu];
1251                 if (sp >= stack_page + sizeof(struct thread_struct)
1252                     && sp <= stack_page + THREAD_SIZE - nbytes)
1253                         return 1;
1254         }
1255         return 0;
1256 }
1257
1258 int validate_sp(unsigned long sp, struct task_struct *p,
1259                        unsigned long nbytes)
1260 {
1261         unsigned long stack_page = (unsigned long)task_stack_page(p);
1262
1263         if (sp >= stack_page + sizeof(struct thread_struct)
1264             && sp <= stack_page + THREAD_SIZE - nbytes)
1265                 return 1;
1266
1267         return valid_irq_stack(sp, p, nbytes);
1268 }
1269
1270 EXPORT_SYMBOL(validate_sp);
1271
1272 unsigned long get_wchan(struct task_struct *p)
1273 {
1274         unsigned long ip, sp;
1275         int count = 0;
1276
1277         if (!p || p == current || p->state == TASK_RUNNING)
1278                 return 0;
1279
1280         sp = p->thread.ksp;
1281         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1282                 return 0;
1283
1284         do {
1285                 sp = *(unsigned long *)sp;
1286                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1287                         return 0;
1288                 if (count > 0) {
1289                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1290                         if (!in_sched_functions(ip))
1291                                 return ip;
1292                 }
1293         } while (count++ < 16);
1294         return 0;
1295 }
1296
1297 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1298
1299 void show_stack(struct task_struct *tsk, unsigned long *stack)
1300 {
1301         unsigned long sp, ip, lr, newsp;
1302         int count = 0;
1303         int firstframe = 1;
1304 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1305         int curr_frame = current->curr_ret_stack;
1306         extern void return_to_handler(void);
1307         unsigned long rth = (unsigned long)return_to_handler;
1308         unsigned long mrth = -1;
1309 #ifdef CONFIG_PPC64
1310         extern void mod_return_to_handler(void);
1311         rth = *(unsigned long *)rth;
1312         mrth = (unsigned long)mod_return_to_handler;
1313         mrth = *(unsigned long *)mrth;
1314 #endif
1315 #endif
1316
1317         sp = (unsigned long) stack;
1318         if (tsk == NULL)
1319                 tsk = current;
1320         if (sp == 0) {
1321                 if (tsk == current)
1322                         asm("mr %0,1" : "=r" (sp));
1323                 else
1324                         sp = tsk->thread.ksp;
1325         }
1326
1327         lr = 0;
1328         printk("Call Trace:\n");
1329         do {
1330                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1331                         return;
1332
1333                 stack = (unsigned long *) sp;
1334                 newsp = stack[0];
1335                 ip = stack[STACK_FRAME_LR_SAVE];
1336                 if (!firstframe || ip != lr) {
1337                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1338 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1339                         if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1340                                 printk(" (%pS)",
1341                                        (void *)current->ret_stack[curr_frame].ret);
1342                                 curr_frame--;
1343                         }
1344 #endif
1345                         if (firstframe)
1346                                 printk(" (unreliable)");
1347                         printk("\n");
1348                 }
1349                 firstframe = 0;
1350
1351                 /*
1352                  * See if this is an exception frame.
1353                  * We look for the "regshere" marker in the current frame.
1354                  */
1355                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1356                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1357                         struct pt_regs *regs = (struct pt_regs *)
1358                                 (sp + STACK_FRAME_OVERHEAD);
1359                         lr = regs->link;
1360                         printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1361                                regs->trap, (void *)regs->nip, (void *)lr);
1362                         firstframe = 1;
1363                 }
1364
1365                 sp = newsp;
1366         } while (count++ < kstack_depth_to_print);
1367 }
1368
1369 #ifdef CONFIG_PPC64
1370 /* Called with hard IRQs off */
1371 void __ppc64_runlatch_on(void)
1372 {
1373         struct thread_info *ti = current_thread_info();
1374         unsigned long ctrl;
1375
1376         ctrl = mfspr(SPRN_CTRLF);
1377         ctrl |= CTRL_RUNLATCH;
1378         mtspr(SPRN_CTRLT, ctrl);
1379
1380         ti->local_flags |= _TLF_RUNLATCH;
1381 }
1382
1383 /* Called with hard IRQs off */
1384 void __ppc64_runlatch_off(void)
1385 {
1386         struct thread_info *ti = current_thread_info();
1387         unsigned long ctrl;
1388
1389         ti->local_flags &= ~_TLF_RUNLATCH;
1390
1391         ctrl = mfspr(SPRN_CTRLF);
1392         ctrl &= ~CTRL_RUNLATCH;
1393         mtspr(SPRN_CTRLT, ctrl);
1394 }
1395 #endif /* CONFIG_PPC64 */
1396
1397 unsigned long arch_align_stack(unsigned long sp)
1398 {
1399         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1400                 sp -= get_random_int() & ~PAGE_MASK;
1401         return sp & ~0xf;
1402 }
1403
1404 static inline unsigned long brk_rnd(void)
1405 {
1406         unsigned long rnd = 0;
1407
1408         /* 8MB for 32bit, 1GB for 64bit */
1409         if (is_32bit_task())
1410                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1411         else
1412                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1413
1414         return rnd << PAGE_SHIFT;
1415 }
1416
1417 unsigned long arch_randomize_brk(struct mm_struct *mm)
1418 {
1419         unsigned long base = mm->brk;
1420         unsigned long ret;
1421
1422 #ifdef CONFIG_PPC_STD_MMU_64
1423         /*
1424          * If we are using 1TB segments and we are allowed to randomise
1425          * the heap, we can put it above 1TB so it is backed by a 1TB
1426          * segment. Otherwise the heap will be in the bottom 1TB
1427          * which always uses 256MB segments and this may result in a
1428          * performance penalty.
1429          */
1430         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1431                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1432 #endif
1433
1434         ret = PAGE_ALIGN(base + brk_rnd());
1435
1436         if (ret < mm->brk)
1437                 return mm->brk;
1438
1439         return ret;
1440 }
1441
1442 unsigned long randomize_et_dyn(unsigned long base)
1443 {
1444         unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1445
1446         if (ret < base)
1447                 return base;
1448
1449         return ret;
1450 }