Merge tag 'renesas-r7s72100-ccf-for-v3.16' of git://git.kernel.org/pub/scm/linux...
[firefly-linux-kernel-4.4.55.git] / arch / arm64 / mm / dma-mapping.c
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19
20 #include <linux/gfp.h>
21 #include <linux/export.h>
22 #include <linux/slab.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dma-contiguous.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/vmalloc.h>
28 #include <linux/swiotlb.h>
29 #include <linux/amba/bus.h>
30
31 #include <asm/cacheflush.h>
32
33 struct dma_map_ops *dma_ops;
34 EXPORT_SYMBOL(dma_ops);
35
36 static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot,
37                                  bool coherent)
38 {
39         if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
40                 return pgprot_writecombine(prot);
41         return prot;
42 }
43
44 static void *__dma_alloc_coherent(struct device *dev, size_t size,
45                                   dma_addr_t *dma_handle, gfp_t flags,
46                                   struct dma_attrs *attrs)
47 {
48         if (dev == NULL) {
49                 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
50                 return NULL;
51         }
52
53         if (IS_ENABLED(CONFIG_ZONE_DMA) &&
54             dev->coherent_dma_mask <= DMA_BIT_MASK(32))
55                 flags |= GFP_DMA;
56         if (IS_ENABLED(CONFIG_DMA_CMA)) {
57                 struct page *page;
58
59                 size = PAGE_ALIGN(size);
60                 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
61                                                         get_order(size));
62                 if (!page)
63                         return NULL;
64
65                 *dma_handle = phys_to_dma(dev, page_to_phys(page));
66                 return page_address(page);
67         } else {
68                 return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
69         }
70 }
71
72 static void __dma_free_coherent(struct device *dev, size_t size,
73                                 void *vaddr, dma_addr_t dma_handle,
74                                 struct dma_attrs *attrs)
75 {
76         if (dev == NULL) {
77                 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
78                 return;
79         }
80
81         if (IS_ENABLED(CONFIG_DMA_CMA)) {
82                 phys_addr_t paddr = dma_to_phys(dev, dma_handle);
83
84                 dma_release_from_contiguous(dev,
85                                         phys_to_page(paddr),
86                                         size >> PAGE_SHIFT);
87         } else {
88                 swiotlb_free_coherent(dev, size, vaddr, dma_handle);
89         }
90 }
91
92 static void *__dma_alloc_noncoherent(struct device *dev, size_t size,
93                                      dma_addr_t *dma_handle, gfp_t flags,
94                                      struct dma_attrs *attrs)
95 {
96         struct page *page, **map;
97         void *ptr, *coherent_ptr;
98         int order, i;
99
100         size = PAGE_ALIGN(size);
101         order = get_order(size);
102
103         ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
104         if (!ptr)
105                 goto no_mem;
106         map = kmalloc(sizeof(struct page *) << order, flags & ~GFP_DMA);
107         if (!map)
108                 goto no_map;
109
110         /* remove any dirty cache lines on the kernel alias */
111         __dma_flush_range(ptr, ptr + size);
112
113         /* create a coherent mapping */
114         page = virt_to_page(ptr);
115         for (i = 0; i < (size >> PAGE_SHIFT); i++)
116                 map[i] = page + i;
117         coherent_ptr = vmap(map, size >> PAGE_SHIFT, VM_MAP,
118                             __get_dma_pgprot(attrs, pgprot_default, false));
119         kfree(map);
120         if (!coherent_ptr)
121                 goto no_map;
122
123         return coherent_ptr;
124
125 no_map:
126         __dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
127 no_mem:
128         *dma_handle = ~0;
129         return NULL;
130 }
131
132 static void __dma_free_noncoherent(struct device *dev, size_t size,
133                                    void *vaddr, dma_addr_t dma_handle,
134                                    struct dma_attrs *attrs)
135 {
136         void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
137
138         vunmap(vaddr);
139         __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
140 }
141
142 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
143                                      unsigned long offset, size_t size,
144                                      enum dma_data_direction dir,
145                                      struct dma_attrs *attrs)
146 {
147         dma_addr_t dev_addr;
148
149         dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
150         __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
151
152         return dev_addr;
153 }
154
155
156 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
157                                  size_t size, enum dma_data_direction dir,
158                                  struct dma_attrs *attrs)
159 {
160         __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
161         swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
162 }
163
164 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
165                                   int nelems, enum dma_data_direction dir,
166                                   struct dma_attrs *attrs)
167 {
168         struct scatterlist *sg;
169         int i, ret;
170
171         ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
172         for_each_sg(sgl, sg, ret, i)
173                 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
174                                sg->length, dir);
175
176         return ret;
177 }
178
179 static void __swiotlb_unmap_sg_attrs(struct device *dev,
180                                      struct scatterlist *sgl, int nelems,
181                                      enum dma_data_direction dir,
182                                      struct dma_attrs *attrs)
183 {
184         struct scatterlist *sg;
185         int i;
186
187         for_each_sg(sgl, sg, nelems, i)
188                 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
189                                  sg->length, dir);
190         swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
191 }
192
193 static void __swiotlb_sync_single_for_cpu(struct device *dev,
194                                           dma_addr_t dev_addr, size_t size,
195                                           enum dma_data_direction dir)
196 {
197         __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
198         swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
199 }
200
201 static void __swiotlb_sync_single_for_device(struct device *dev,
202                                              dma_addr_t dev_addr, size_t size,
203                                              enum dma_data_direction dir)
204 {
205         swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
206         __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
207 }
208
209 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
210                                       struct scatterlist *sgl, int nelems,
211                                       enum dma_data_direction dir)
212 {
213         struct scatterlist *sg;
214         int i;
215
216         for_each_sg(sgl, sg, nelems, i)
217                 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
218                                  sg->length, dir);
219         swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
220 }
221
222 static void __swiotlb_sync_sg_for_device(struct device *dev,
223                                          struct scatterlist *sgl, int nelems,
224                                          enum dma_data_direction dir)
225 {
226         struct scatterlist *sg;
227         int i;
228
229         swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
230         for_each_sg(sgl, sg, nelems, i)
231                 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
232                                sg->length, dir);
233 }
234
235 /* vma->vm_page_prot must be set appropriately before calling this function */
236 static int __dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
237                              void *cpu_addr, dma_addr_t dma_addr, size_t size)
238 {
239         int ret = -ENXIO;
240         unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
241                                         PAGE_SHIFT;
242         unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
243         unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
244         unsigned long off = vma->vm_pgoff;
245
246         if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
247                 return ret;
248
249         if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
250                 ret = remap_pfn_range(vma, vma->vm_start,
251                                       pfn + off,
252                                       vma->vm_end - vma->vm_start,
253                                       vma->vm_page_prot);
254         }
255
256         return ret;
257 }
258
259 static int __swiotlb_mmap_noncoherent(struct device *dev,
260                 struct vm_area_struct *vma,
261                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
262                 struct dma_attrs *attrs)
263 {
264         vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, false);
265         return __dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
266 }
267
268 static int __swiotlb_mmap_coherent(struct device *dev,
269                 struct vm_area_struct *vma,
270                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
271                 struct dma_attrs *attrs)
272 {
273         /* Just use whatever page_prot attributes were specified */
274         return __dma_common_mmap(dev, vma, cpu_addr, dma_addr, size);
275 }
276
277 struct dma_map_ops noncoherent_swiotlb_dma_ops = {
278         .alloc = __dma_alloc_noncoherent,
279         .free = __dma_free_noncoherent,
280         .mmap = __swiotlb_mmap_noncoherent,
281         .map_page = __swiotlb_map_page,
282         .unmap_page = __swiotlb_unmap_page,
283         .map_sg = __swiotlb_map_sg_attrs,
284         .unmap_sg = __swiotlb_unmap_sg_attrs,
285         .sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
286         .sync_single_for_device = __swiotlb_sync_single_for_device,
287         .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
288         .sync_sg_for_device = __swiotlb_sync_sg_for_device,
289         .dma_supported = swiotlb_dma_supported,
290         .mapping_error = swiotlb_dma_mapping_error,
291 };
292 EXPORT_SYMBOL(noncoherent_swiotlb_dma_ops);
293
294 struct dma_map_ops coherent_swiotlb_dma_ops = {
295         .alloc = __dma_alloc_coherent,
296         .free = __dma_free_coherent,
297         .mmap = __swiotlb_mmap_coherent,
298         .map_page = swiotlb_map_page,
299         .unmap_page = swiotlb_unmap_page,
300         .map_sg = swiotlb_map_sg_attrs,
301         .unmap_sg = swiotlb_unmap_sg_attrs,
302         .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
303         .sync_single_for_device = swiotlb_sync_single_for_device,
304         .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
305         .sync_sg_for_device = swiotlb_sync_sg_for_device,
306         .dma_supported = swiotlb_dma_supported,
307         .mapping_error = swiotlb_dma_mapping_error,
308 };
309 EXPORT_SYMBOL(coherent_swiotlb_dma_ops);
310
311 static int dma_bus_notifier(struct notifier_block *nb,
312                             unsigned long event, void *_dev)
313 {
314         struct device *dev = _dev;
315
316         if (event != BUS_NOTIFY_ADD_DEVICE)
317                 return NOTIFY_DONE;
318
319         if (of_property_read_bool(dev->of_node, "dma-coherent"))
320                 set_dma_ops(dev, &coherent_swiotlb_dma_ops);
321
322         return NOTIFY_OK;
323 }
324
325 static struct notifier_block platform_bus_nb = {
326         .notifier_call = dma_bus_notifier,
327 };
328
329 static struct notifier_block amba_bus_nb = {
330         .notifier_call = dma_bus_notifier,
331 };
332
333 extern int swiotlb_late_init_with_default_size(size_t default_size);
334
335 static int __init swiotlb_late_init(void)
336 {
337         size_t swiotlb_size = min(SZ_64M, MAX_ORDER_NR_PAGES << PAGE_SHIFT);
338
339         /*
340          * These must be registered before of_platform_populate().
341          */
342         bus_register_notifier(&platform_bus_type, &platform_bus_nb);
343         bus_register_notifier(&amba_bustype, &amba_bus_nb);
344
345         dma_ops = &noncoherent_swiotlb_dma_ops;
346
347         return swiotlb_late_init_with_default_size(swiotlb_size);
348 }
349 arch_initcall(swiotlb_late_init);
350
351 #define PREALLOC_DMA_DEBUG_ENTRIES      4096
352
353 static int __init dma_debug_do_init(void)
354 {
355         dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
356         return 0;
357 }
358 fs_initcall(dma_debug_do_init);