arm64: KVM: add trap handlers for AArch32 debug registers
[firefly-linux-kernel-4.4.55.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/mm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_host.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_coproc.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cputype.h>
33 #include <asm/debug-monitors.h>
34 #include <trace/events/kvm.h>
35
36 #include "sys_regs.h"
37
38 /*
39  * All of this file is extremly similar to the ARM coproc.c, but the
40  * types are different. My gut feeling is that it should be pretty
41  * easy to merge, but that would be an ABI breakage -- again. VFP
42  * would also need to be abstracted.
43  *
44  * For AArch32, we only take care of what is being trapped. Anything
45  * that has to do with init and userspace access has to go via the
46  * 64bit interface.
47  */
48
49 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
50 static u32 cache_levels;
51
52 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
53 #define CSSELR_MAX 12
54
55 /* Which cache CCSIDR represents depends on CSSELR value. */
56 static u32 get_ccsidr(u32 csselr)
57 {
58         u32 ccsidr;
59
60         /* Make sure noone else changes CSSELR during this! */
61         local_irq_disable();
62         /* Put value into CSSELR */
63         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
64         isb();
65         /* Read result out of CCSIDR */
66         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
67         local_irq_enable();
68
69         return ccsidr;
70 }
71
72 static void do_dc_cisw(u32 val)
73 {
74         asm volatile("dc cisw, %x0" : : "r" (val));
75         dsb(ish);
76 }
77
78 static void do_dc_csw(u32 val)
79 {
80         asm volatile("dc csw, %x0" : : "r" (val));
81         dsb(ish);
82 }
83
84 /* See note at ARM ARM B1.14.4 */
85 static bool access_dcsw(struct kvm_vcpu *vcpu,
86                         const struct sys_reg_params *p,
87                         const struct sys_reg_desc *r)
88 {
89         unsigned long val;
90         int cpu;
91
92         if (!p->is_write)
93                 return read_from_write_only(vcpu, p);
94
95         cpu = get_cpu();
96
97         cpumask_setall(&vcpu->arch.require_dcache_flush);
98         cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
99
100         /* If we were already preempted, take the long way around */
101         if (cpu != vcpu->arch.last_pcpu) {
102                 flush_cache_all();
103                 goto done;
104         }
105
106         val = *vcpu_reg(vcpu, p->Rt);
107
108         switch (p->CRm) {
109         case 6:                 /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
110         case 14:                /* DCCISW */
111                 do_dc_cisw(val);
112                 break;
113
114         case 10:                /* DCCSW */
115                 do_dc_csw(val);
116                 break;
117         }
118
119 done:
120         put_cpu();
121
122         return true;
123 }
124
125 /*
126  * Generic accessor for VM registers. Only called as long as HCR_TVM
127  * is set.
128  */
129 static bool access_vm_reg(struct kvm_vcpu *vcpu,
130                           const struct sys_reg_params *p,
131                           const struct sys_reg_desc *r)
132 {
133         unsigned long val;
134
135         BUG_ON(!p->is_write);
136
137         val = *vcpu_reg(vcpu, p->Rt);
138         if (!p->is_aarch32 || !p->is_32bit)
139                 vcpu_sys_reg(vcpu, r->reg) = val;
140         else
141                 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
142
143         return true;
144 }
145
146 /*
147  * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set.  If the
148  * guest enables the MMU, we stop trapping the VM sys_regs and leave
149  * it in complete control of the caches.
150  */
151 static bool access_sctlr(struct kvm_vcpu *vcpu,
152                          const struct sys_reg_params *p,
153                          const struct sys_reg_desc *r)
154 {
155         access_vm_reg(vcpu, p, r);
156
157         if (vcpu_has_cache_enabled(vcpu)) {     /* MMU+Caches enabled? */
158                 vcpu->arch.hcr_el2 &= ~HCR_TVM;
159                 stage2_flush_vm(vcpu->kvm);
160         }
161
162         return true;
163 }
164
165 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
166                         const struct sys_reg_params *p,
167                         const struct sys_reg_desc *r)
168 {
169         if (p->is_write)
170                 return ignore_write(vcpu, p);
171         else
172                 return read_zero(vcpu, p);
173 }
174
175 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
176                            const struct sys_reg_params *p,
177                            const struct sys_reg_desc *r)
178 {
179         if (p->is_write) {
180                 return ignore_write(vcpu, p);
181         } else {
182                 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
183                 return true;
184         }
185 }
186
187 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
188                                    const struct sys_reg_params *p,
189                                    const struct sys_reg_desc *r)
190 {
191         if (p->is_write) {
192                 return ignore_write(vcpu, p);
193         } else {
194                 u32 val;
195                 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
196                 *vcpu_reg(vcpu, p->Rt) = val;
197                 return true;
198         }
199 }
200
201 /*
202  * We want to avoid world-switching all the DBG registers all the
203  * time:
204  * 
205  * - If we've touched any debug register, it is likely that we're
206  *   going to touch more of them. It then makes sense to disable the
207  *   traps and start doing the save/restore dance
208  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
209  *   then mandatory to save/restore the registers, as the guest
210  *   depends on them.
211  * 
212  * For this, we use a DIRTY bit, indicating the guest has modified the
213  * debug registers, used as follow:
214  *
215  * On guest entry:
216  * - If the dirty bit is set (because we're coming back from trapping),
217  *   disable the traps, save host registers, restore guest registers.
218  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
219  *   set the dirty bit, disable the traps, save host registers,
220  *   restore guest registers.
221  * - Otherwise, enable the traps
222  *
223  * On guest exit:
224  * - If the dirty bit is set, save guest registers, restore host
225  *   registers and clear the dirty bit. This ensure that the host can
226  *   now use the debug registers.
227  */
228 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
229                             const struct sys_reg_params *p,
230                             const struct sys_reg_desc *r)
231 {
232         if (p->is_write) {
233                 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
234                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
235         } else {
236                 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
237         }
238
239         return true;
240 }
241
242 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
243 {
244         u64 amair;
245
246         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
247         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
248 }
249
250 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
251 {
252         /*
253          * Simply map the vcpu_id into the Aff0 field of the MPIDR.
254          */
255         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
256 }
257
258 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
259 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
260         /* DBGBVRn_EL1 */                                               \
261         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),     \
262           trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 },         \
263         /* DBGBCRn_EL1 */                                               \
264         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),     \
265           trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 },         \
266         /* DBGWVRn_EL1 */                                               \
267         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),     \
268           trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 },         \
269         /* DBGWCRn_EL1 */                                               \
270         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),     \
271           trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
272
273 /*
274  * Architected system registers.
275  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
276  *
277  * We could trap ID_DFR0 and tell the guest we don't support performance
278  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
279  * NAKed, so it will read the PMCR anyway.
280  *
281  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
282  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
283  * all PM registers, which doesn't crash the guest kernel at least.
284  *
285  * Debug handling: We do trap most, if not all debug related system
286  * registers. The implementation is good enough to ensure that a guest
287  * can use these with minimal performance degradation. The drawback is
288  * that we don't implement any of the external debug, none of the
289  * OSlock protocol. This should be revisited if we ever encounter a
290  * more demanding guest...
291  */
292 static const struct sys_reg_desc sys_reg_descs[] = {
293         /* DC ISW */
294         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
295           access_dcsw },
296         /* DC CSW */
297         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
298           access_dcsw },
299         /* DC CISW */
300         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
301           access_dcsw },
302
303         DBG_BCR_BVR_WCR_WVR_EL1(0),
304         DBG_BCR_BVR_WCR_WVR_EL1(1),
305         /* MDCCINT_EL1 */
306         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
307           trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
308         /* MDSCR_EL1 */
309         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
310           trap_debug_regs, reset_val, MDSCR_EL1, 0 },
311         DBG_BCR_BVR_WCR_WVR_EL1(2),
312         DBG_BCR_BVR_WCR_WVR_EL1(3),
313         DBG_BCR_BVR_WCR_WVR_EL1(4),
314         DBG_BCR_BVR_WCR_WVR_EL1(5),
315         DBG_BCR_BVR_WCR_WVR_EL1(6),
316         DBG_BCR_BVR_WCR_WVR_EL1(7),
317         DBG_BCR_BVR_WCR_WVR_EL1(8),
318         DBG_BCR_BVR_WCR_WVR_EL1(9),
319         DBG_BCR_BVR_WCR_WVR_EL1(10),
320         DBG_BCR_BVR_WCR_WVR_EL1(11),
321         DBG_BCR_BVR_WCR_WVR_EL1(12),
322         DBG_BCR_BVR_WCR_WVR_EL1(13),
323         DBG_BCR_BVR_WCR_WVR_EL1(14),
324         DBG_BCR_BVR_WCR_WVR_EL1(15),
325
326         /* MDRAR_EL1 */
327         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
328           trap_raz_wi },
329         /* OSLAR_EL1 */
330         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
331           trap_raz_wi },
332         /* OSLSR_EL1 */
333         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
334           trap_oslsr_el1 },
335         /* OSDLR_EL1 */
336         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
337           trap_raz_wi },
338         /* DBGPRCR_EL1 */
339         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
340           trap_raz_wi },
341         /* DBGCLAIMSET_EL1 */
342         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
343           trap_raz_wi },
344         /* DBGCLAIMCLR_EL1 */
345         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
346           trap_raz_wi },
347         /* DBGAUTHSTATUS_EL1 */
348         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
349           trap_dbgauthstatus_el1 },
350
351         /* TEECR32_EL1 */
352         { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
353           NULL, reset_val, TEECR32_EL1, 0 },
354         /* TEEHBR32_EL1 */
355         { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
356           NULL, reset_val, TEEHBR32_EL1, 0 },
357
358         /* MDCCSR_EL1 */
359         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
360           trap_raz_wi },
361         /* DBGDTR_EL0 */
362         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
363           trap_raz_wi },
364         /* DBGDTR[TR]X_EL0 */
365         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
366           trap_raz_wi },
367
368         /* DBGVCR32_EL2 */
369         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
370           NULL, reset_val, DBGVCR32_EL2, 0 },
371
372         /* MPIDR_EL1 */
373         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
374           NULL, reset_mpidr, MPIDR_EL1 },
375         /* SCTLR_EL1 */
376         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
377           access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
378         /* CPACR_EL1 */
379         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
380           NULL, reset_val, CPACR_EL1, 0 },
381         /* TTBR0_EL1 */
382         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
383           access_vm_reg, reset_unknown, TTBR0_EL1 },
384         /* TTBR1_EL1 */
385         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
386           access_vm_reg, reset_unknown, TTBR1_EL1 },
387         /* TCR_EL1 */
388         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
389           access_vm_reg, reset_val, TCR_EL1, 0 },
390
391         /* AFSR0_EL1 */
392         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
393           access_vm_reg, reset_unknown, AFSR0_EL1 },
394         /* AFSR1_EL1 */
395         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
396           access_vm_reg, reset_unknown, AFSR1_EL1 },
397         /* ESR_EL1 */
398         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
399           access_vm_reg, reset_unknown, ESR_EL1 },
400         /* FAR_EL1 */
401         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
402           access_vm_reg, reset_unknown, FAR_EL1 },
403         /* PAR_EL1 */
404         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
405           NULL, reset_unknown, PAR_EL1 },
406
407         /* PMINTENSET_EL1 */
408         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
409           trap_raz_wi },
410         /* PMINTENCLR_EL1 */
411         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
412           trap_raz_wi },
413
414         /* MAIR_EL1 */
415         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
416           access_vm_reg, reset_unknown, MAIR_EL1 },
417         /* AMAIR_EL1 */
418         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
419           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
420
421         /* VBAR_EL1 */
422         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
423           NULL, reset_val, VBAR_EL1, 0 },
424         /* CONTEXTIDR_EL1 */
425         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
426           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
427         /* TPIDR_EL1 */
428         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
429           NULL, reset_unknown, TPIDR_EL1 },
430
431         /* CNTKCTL_EL1 */
432         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
433           NULL, reset_val, CNTKCTL_EL1, 0},
434
435         /* CSSELR_EL1 */
436         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
437           NULL, reset_unknown, CSSELR_EL1 },
438
439         /* PMCR_EL0 */
440         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
441           trap_raz_wi },
442         /* PMCNTENSET_EL0 */
443         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
444           trap_raz_wi },
445         /* PMCNTENCLR_EL0 */
446         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
447           trap_raz_wi },
448         /* PMOVSCLR_EL0 */
449         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
450           trap_raz_wi },
451         /* PMSWINC_EL0 */
452         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
453           trap_raz_wi },
454         /* PMSELR_EL0 */
455         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
456           trap_raz_wi },
457         /* PMCEID0_EL0 */
458         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
459           trap_raz_wi },
460         /* PMCEID1_EL0 */
461         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
462           trap_raz_wi },
463         /* PMCCNTR_EL0 */
464         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
465           trap_raz_wi },
466         /* PMXEVTYPER_EL0 */
467         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
468           trap_raz_wi },
469         /* PMXEVCNTR_EL0 */
470         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
471           trap_raz_wi },
472         /* PMUSERENR_EL0 */
473         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
474           trap_raz_wi },
475         /* PMOVSSET_EL0 */
476         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
477           trap_raz_wi },
478
479         /* TPIDR_EL0 */
480         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
481           NULL, reset_unknown, TPIDR_EL0 },
482         /* TPIDRRO_EL0 */
483         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
484           NULL, reset_unknown, TPIDRRO_EL0 },
485
486         /* DACR32_EL2 */
487         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
488           NULL, reset_unknown, DACR32_EL2 },
489         /* IFSR32_EL2 */
490         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
491           NULL, reset_unknown, IFSR32_EL2 },
492         /* FPEXC32_EL2 */
493         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
494           NULL, reset_val, FPEXC32_EL2, 0x70 },
495 };
496
497 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
498                         const struct sys_reg_params *p,
499                         const struct sys_reg_desc *r)
500 {
501         if (p->is_write) {
502                 return ignore_write(vcpu, p);
503         } else {
504                 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
505                 u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
506                 u32 el3 = !!((pfr >> 12) & 0xf);
507
508                 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
509                                           (((dfr >> 12) & 0xf) << 24) |
510                                           (((dfr >> 28) & 0xf) << 20) |
511                                           (6 << 16) | (el3 << 14) | (el3 << 12));
512                 return true;
513         }
514 }
515
516 static bool trap_debug32(struct kvm_vcpu *vcpu,
517                          const struct sys_reg_params *p,
518                          const struct sys_reg_desc *r)
519 {
520         if (p->is_write) {
521                 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
522                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
523         } else {
524                 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
525         }
526
527         return true;
528 }
529
530 #define DBG_BCR_BVR_WCR_WVR(n)                                  \
531         /* DBGBVRn */                                           \
532         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32,    \
533           NULL, (cp14_DBGBVR0 + (n) * 2) },                     \
534         /* DBGBCRn */                                           \
535         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32,    \
536           NULL, (cp14_DBGBCR0 + (n) * 2) },                     \
537         /* DBGWVRn */                                           \
538         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32,    \
539           NULL, (cp14_DBGWVR0 + (n) * 2) },                     \
540         /* DBGWCRn */                                           \
541         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32,    \
542           NULL, (cp14_DBGWCR0 + (n) * 2) }
543
544 #define DBGBXVR(n)                                              \
545         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32,    \
546           NULL, cp14_DBGBXVR0 + n * 2 }
547
548 /*
549  * Trapped cp14 registers. We generally ignore most of the external
550  * debug, on the principle that they don't really make sense to a
551  * guest. Revisit this one day, whould this principle change.
552  */
553 static const struct sys_reg_desc cp14_regs[] = {
554         /* DBGIDR */
555         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
556         /* DBGDTRRXext */
557         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
558
559         DBG_BCR_BVR_WCR_WVR(0),
560         /* DBGDSCRint */
561         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
562         DBG_BCR_BVR_WCR_WVR(1),
563         /* DBGDCCINT */
564         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
565         /* DBGDSCRext */
566         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
567         DBG_BCR_BVR_WCR_WVR(2),
568         /* DBGDTR[RT]Xint */
569         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
570         /* DBGDTR[RT]Xext */
571         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
572         DBG_BCR_BVR_WCR_WVR(3),
573         DBG_BCR_BVR_WCR_WVR(4),
574         DBG_BCR_BVR_WCR_WVR(5),
575         /* DBGWFAR */
576         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
577         /* DBGOSECCR */
578         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
579         DBG_BCR_BVR_WCR_WVR(6),
580         /* DBGVCR */
581         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
582         DBG_BCR_BVR_WCR_WVR(7),
583         DBG_BCR_BVR_WCR_WVR(8),
584         DBG_BCR_BVR_WCR_WVR(9),
585         DBG_BCR_BVR_WCR_WVR(10),
586         DBG_BCR_BVR_WCR_WVR(11),
587         DBG_BCR_BVR_WCR_WVR(12),
588         DBG_BCR_BVR_WCR_WVR(13),
589         DBG_BCR_BVR_WCR_WVR(14),
590         DBG_BCR_BVR_WCR_WVR(15),
591
592         /* DBGDRAR (32bit) */
593         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
594
595         DBGBXVR(0),
596         /* DBGOSLAR */
597         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
598         DBGBXVR(1),
599         /* DBGOSLSR */
600         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
601         DBGBXVR(2),
602         DBGBXVR(3),
603         /* DBGOSDLR */
604         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
605         DBGBXVR(4),
606         /* DBGPRCR */
607         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
608         DBGBXVR(5),
609         DBGBXVR(6),
610         DBGBXVR(7),
611         DBGBXVR(8),
612         DBGBXVR(9),
613         DBGBXVR(10),
614         DBGBXVR(11),
615         DBGBXVR(12),
616         DBGBXVR(13),
617         DBGBXVR(14),
618         DBGBXVR(15),
619
620         /* DBGDSAR (32bit) */
621         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
622
623         /* DBGDEVID2 */
624         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
625         /* DBGDEVID1 */
626         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
627         /* DBGDEVID */
628         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
629         /* DBGCLAIMSET */
630         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
631         /* DBGCLAIMCLR */
632         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
633         /* DBGAUTHSTATUS */
634         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
635 };
636
637 /* Trapped cp14 64bit registers */
638 static const struct sys_reg_desc cp14_64_regs[] = {
639         /* DBGDRAR (64bit) */
640         { Op1( 0), CRm( 1), .access = trap_raz_wi },
641
642         /* DBGDSAR (64bit) */
643         { Op1( 0), CRm( 2), .access = trap_raz_wi },
644 };
645
646 /*
647  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
648  * depending on the way they are accessed (as a 32bit or a 64bit
649  * register).
650  */
651 static const struct sys_reg_desc cp15_regs[] = {
652         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
653         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
654         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
655         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
656         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
657         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
658         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
659         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
660         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
661         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
662         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
663
664         /*
665          * DC{C,I,CI}SW operations:
666          */
667         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
668         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
669         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
670
671         /* PMU */
672         { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
673         { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
674         { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
675         { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
676         { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
677         { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
678         { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
679         { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
680         { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
681         { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
682         { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
683         { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
684         { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
685
686         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
687         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
688         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
689         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
690         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
691 };
692
693 static const struct sys_reg_desc cp15_64_regs[] = {
694         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
695         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
696 };
697
698 /* Target specific emulation tables */
699 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
700
701 void kvm_register_target_sys_reg_table(unsigned int target,
702                                        struct kvm_sys_reg_target_table *table)
703 {
704         target_tables[target] = table;
705 }
706
707 /* Get specific register table for this target. */
708 static const struct sys_reg_desc *get_target_table(unsigned target,
709                                                    bool mode_is_64,
710                                                    size_t *num)
711 {
712         struct kvm_sys_reg_target_table *table;
713
714         table = target_tables[target];
715         if (mode_is_64) {
716                 *num = table->table64.num;
717                 return table->table64.table;
718         } else {
719                 *num = table->table32.num;
720                 return table->table32.table;
721         }
722 }
723
724 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
725                                          const struct sys_reg_desc table[],
726                                          unsigned int num)
727 {
728         unsigned int i;
729
730         for (i = 0; i < num; i++) {
731                 const struct sys_reg_desc *r = &table[i];
732
733                 if (params->Op0 != r->Op0)
734                         continue;
735                 if (params->Op1 != r->Op1)
736                         continue;
737                 if (params->CRn != r->CRn)
738                         continue;
739                 if (params->CRm != r->CRm)
740                         continue;
741                 if (params->Op2 != r->Op2)
742                         continue;
743
744                 return r;
745         }
746         return NULL;
747 }
748
749 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
750 {
751         kvm_inject_undefined(vcpu);
752         return 1;
753 }
754
755 /*
756  * emulate_cp --  tries to match a sys_reg access in a handling table, and
757  *                call the corresponding trap handler.
758  *
759  * @params: pointer to the descriptor of the access
760  * @table: array of trap descriptors
761  * @num: size of the trap descriptor array
762  *
763  * Return 0 if the access has been handled, and -1 if not.
764  */
765 static int emulate_cp(struct kvm_vcpu *vcpu,
766                       const struct sys_reg_params *params,
767                       const struct sys_reg_desc *table,
768                       size_t num)
769 {
770         const struct sys_reg_desc *r;
771
772         if (!table)
773                 return -1;      /* Not handled */
774
775         r = find_reg(params, table, num);
776
777         if (r) {
778                 /*
779                  * Not having an accessor means that we have
780                  * configured a trap that we don't know how to
781                  * handle. This certainly qualifies as a gross bug
782                  * that should be fixed right away.
783                  */
784                 BUG_ON(!r->access);
785
786                 if (likely(r->access(vcpu, params, r))) {
787                         /* Skip instruction, since it was emulated */
788                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
789                 }
790
791                 /* Handled */
792                 return 0;
793         }
794
795         /* Not handled */
796         return -1;
797 }
798
799 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
800                                 struct sys_reg_params *params)
801 {
802         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
803         int cp;
804
805         switch(hsr_ec) {
806         case ESR_EL2_EC_CP15_32:
807         case ESR_EL2_EC_CP15_64:
808                 cp = 15;
809                 break;
810         case ESR_EL2_EC_CP14_MR:
811         case ESR_EL2_EC_CP14_64:
812                 cp = 14;
813                 break;
814         default:
815                 WARN_ON((cp = -1));
816         }
817
818         kvm_err("Unsupported guest CP%d access at: %08lx\n",
819                 cp, *vcpu_pc(vcpu));
820         print_sys_reg_instr(params);
821         kvm_inject_undefined(vcpu);
822 }
823
824 /**
825  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
826  * @vcpu: The VCPU pointer
827  * @run:  The kvm_run struct
828  */
829 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
830                             const struct sys_reg_desc *global,
831                             size_t nr_global,
832                             const struct sys_reg_desc *target_specific,
833                             size_t nr_specific)
834 {
835         struct sys_reg_params params;
836         u32 hsr = kvm_vcpu_get_hsr(vcpu);
837         int Rt2 = (hsr >> 10) & 0xf;
838
839         params.is_aarch32 = true;
840         params.is_32bit = false;
841         params.CRm = (hsr >> 1) & 0xf;
842         params.Rt = (hsr >> 5) & 0xf;
843         params.is_write = ((hsr & 1) == 0);
844
845         params.Op0 = 0;
846         params.Op1 = (hsr >> 16) & 0xf;
847         params.Op2 = 0;
848         params.CRn = 0;
849
850         /*
851          * Massive hack here. Store Rt2 in the top 32bits so we only
852          * have one register to deal with. As we use the same trap
853          * backends between AArch32 and AArch64, we get away with it.
854          */
855         if (params.is_write) {
856                 u64 val = *vcpu_reg(vcpu, params.Rt);
857                 val &= 0xffffffff;
858                 val |= *vcpu_reg(vcpu, Rt2) << 32;
859                 *vcpu_reg(vcpu, params.Rt) = val;
860         }
861
862         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
863                 goto out;
864         if (!emulate_cp(vcpu, &params, global, nr_global))
865                 goto out;
866
867         unhandled_cp_access(vcpu, &params);
868
869 out:
870         /* Do the opposite hack for the read side */
871         if (!params.is_write) {
872                 u64 val = *vcpu_reg(vcpu, params.Rt);
873                 val >>= 32;
874                 *vcpu_reg(vcpu, Rt2) = val;
875         }
876
877         return 1;
878 }
879
880 /**
881  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
882  * @vcpu: The VCPU pointer
883  * @run:  The kvm_run struct
884  */
885 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
886                             const struct sys_reg_desc *global,
887                             size_t nr_global,
888                             const struct sys_reg_desc *target_specific,
889                             size_t nr_specific)
890 {
891         struct sys_reg_params params;
892         u32 hsr = kvm_vcpu_get_hsr(vcpu);
893
894         params.is_aarch32 = true;
895         params.is_32bit = true;
896         params.CRm = (hsr >> 1) & 0xf;
897         params.Rt  = (hsr >> 5) & 0xf;
898         params.is_write = ((hsr & 1) == 0);
899         params.CRn = (hsr >> 10) & 0xf;
900         params.Op0 = 0;
901         params.Op1 = (hsr >> 14) & 0x7;
902         params.Op2 = (hsr >> 17) & 0x7;
903
904         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
905                 return 1;
906         if (!emulate_cp(vcpu, &params, global, nr_global))
907                 return 1;
908
909         unhandled_cp_access(vcpu, &params);
910         return 1;
911 }
912
913 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
914 {
915         const struct sys_reg_desc *target_specific;
916         size_t num;
917
918         target_specific = get_target_table(vcpu->arch.target, false, &num);
919         return kvm_handle_cp_64(vcpu,
920                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
921                                 target_specific, num);
922 }
923
924 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
925 {
926         const struct sys_reg_desc *target_specific;
927         size_t num;
928
929         target_specific = get_target_table(vcpu->arch.target, false, &num);
930         return kvm_handle_cp_32(vcpu,
931                                 cp15_regs, ARRAY_SIZE(cp15_regs),
932                                 target_specific, num);
933 }
934
935 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
936 {
937         return kvm_handle_cp_64(vcpu,
938                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
939                                 NULL, 0);
940 }
941
942 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
943 {
944         return kvm_handle_cp_32(vcpu,
945                                 cp14_regs, ARRAY_SIZE(cp14_regs),
946                                 NULL, 0);
947 }
948
949 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
950                            const struct sys_reg_params *params)
951 {
952         size_t num;
953         const struct sys_reg_desc *table, *r;
954
955         table = get_target_table(vcpu->arch.target, true, &num);
956
957         /* Search target-specific then generic table. */
958         r = find_reg(params, table, num);
959         if (!r)
960                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
961
962         if (likely(r)) {
963                 /*
964                  * Not having an accessor means that we have
965                  * configured a trap that we don't know how to
966                  * handle. This certainly qualifies as a gross bug
967                  * that should be fixed right away.
968                  */
969                 BUG_ON(!r->access);
970
971                 if (likely(r->access(vcpu, params, r))) {
972                         /* Skip instruction, since it was emulated */
973                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
974                         return 1;
975                 }
976                 /* If access function fails, it should complain. */
977         } else {
978                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
979                         *vcpu_pc(vcpu));
980                 print_sys_reg_instr(params);
981         }
982         kvm_inject_undefined(vcpu);
983         return 1;
984 }
985
986 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
987                               const struct sys_reg_desc *table, size_t num)
988 {
989         unsigned long i;
990
991         for (i = 0; i < num; i++)
992                 if (table[i].reset)
993                         table[i].reset(vcpu, &table[i]);
994 }
995
996 /**
997  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
998  * @vcpu: The VCPU pointer
999  * @run:  The kvm_run struct
1000  */
1001 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1002 {
1003         struct sys_reg_params params;
1004         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1005
1006         params.is_aarch32 = false;
1007         params.is_32bit = false;
1008         params.Op0 = (esr >> 20) & 3;
1009         params.Op1 = (esr >> 14) & 0x7;
1010         params.CRn = (esr >> 10) & 0xf;
1011         params.CRm = (esr >> 1) & 0xf;
1012         params.Op2 = (esr >> 17) & 0x7;
1013         params.Rt = (esr >> 5) & 0x1f;
1014         params.is_write = !(esr & 1);
1015
1016         return emulate_sys_reg(vcpu, &params);
1017 }
1018
1019 /******************************************************************************
1020  * Userspace API
1021  *****************************************************************************/
1022
1023 static bool index_to_params(u64 id, struct sys_reg_params *params)
1024 {
1025         switch (id & KVM_REG_SIZE_MASK) {
1026         case KVM_REG_SIZE_U64:
1027                 /* Any unused index bits means it's not valid. */
1028                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1029                               | KVM_REG_ARM_COPROC_MASK
1030                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1031                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1032                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1033                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1034                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1035                         return false;
1036                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1037                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1038                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1039                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1040                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1041                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1042                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1043                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1044                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1045                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1046                 return true;
1047         default:
1048                 return false;
1049         }
1050 }
1051
1052 /* Decode an index value, and find the sys_reg_desc entry. */
1053 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1054                                                     u64 id)
1055 {
1056         size_t num;
1057         const struct sys_reg_desc *table, *r;
1058         struct sys_reg_params params;
1059
1060         /* We only do sys_reg for now. */
1061         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1062                 return NULL;
1063
1064         if (!index_to_params(id, &params))
1065                 return NULL;
1066
1067         table = get_target_table(vcpu->arch.target, true, &num);
1068         r = find_reg(&params, table, num);
1069         if (!r)
1070                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1071
1072         /* Not saved in the sys_reg array? */
1073         if (r && !r->reg)
1074                 r = NULL;
1075
1076         return r;
1077 }
1078
1079 /*
1080  * These are the invariant sys_reg registers: we let the guest see the
1081  * host versions of these, so they're part of the guest state.
1082  *
1083  * A future CPU may provide a mechanism to present different values to
1084  * the guest, or a future kvm may trap them.
1085  */
1086
1087 #define FUNCTION_INVARIANT(reg)                                         \
1088         static void get_##reg(struct kvm_vcpu *v,                       \
1089                               const struct sys_reg_desc *r)             \
1090         {                                                               \
1091                 u64 val;                                                \
1092                                                                         \
1093                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
1094                              : "=r" (val));                             \
1095                 ((struct sys_reg_desc *)r)->val = val;                  \
1096         }
1097
1098 FUNCTION_INVARIANT(midr_el1)
1099 FUNCTION_INVARIANT(ctr_el0)
1100 FUNCTION_INVARIANT(revidr_el1)
1101 FUNCTION_INVARIANT(id_pfr0_el1)
1102 FUNCTION_INVARIANT(id_pfr1_el1)
1103 FUNCTION_INVARIANT(id_dfr0_el1)
1104 FUNCTION_INVARIANT(id_afr0_el1)
1105 FUNCTION_INVARIANT(id_mmfr0_el1)
1106 FUNCTION_INVARIANT(id_mmfr1_el1)
1107 FUNCTION_INVARIANT(id_mmfr2_el1)
1108 FUNCTION_INVARIANT(id_mmfr3_el1)
1109 FUNCTION_INVARIANT(id_isar0_el1)
1110 FUNCTION_INVARIANT(id_isar1_el1)
1111 FUNCTION_INVARIANT(id_isar2_el1)
1112 FUNCTION_INVARIANT(id_isar3_el1)
1113 FUNCTION_INVARIANT(id_isar4_el1)
1114 FUNCTION_INVARIANT(id_isar5_el1)
1115 FUNCTION_INVARIANT(clidr_el1)
1116 FUNCTION_INVARIANT(aidr_el1)
1117
1118 /* ->val is filled in by kvm_sys_reg_table_init() */
1119 static struct sys_reg_desc invariant_sys_regs[] = {
1120         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1121           NULL, get_midr_el1 },
1122         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1123           NULL, get_revidr_el1 },
1124         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1125           NULL, get_id_pfr0_el1 },
1126         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1127           NULL, get_id_pfr1_el1 },
1128         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1129           NULL, get_id_dfr0_el1 },
1130         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1131           NULL, get_id_afr0_el1 },
1132         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1133           NULL, get_id_mmfr0_el1 },
1134         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1135           NULL, get_id_mmfr1_el1 },
1136         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1137           NULL, get_id_mmfr2_el1 },
1138         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1139           NULL, get_id_mmfr3_el1 },
1140         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1141           NULL, get_id_isar0_el1 },
1142         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1143           NULL, get_id_isar1_el1 },
1144         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1145           NULL, get_id_isar2_el1 },
1146         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1147           NULL, get_id_isar3_el1 },
1148         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1149           NULL, get_id_isar4_el1 },
1150         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1151           NULL, get_id_isar5_el1 },
1152         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1153           NULL, get_clidr_el1 },
1154         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1155           NULL, get_aidr_el1 },
1156         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1157           NULL, get_ctr_el0 },
1158 };
1159
1160 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1161 {
1162         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1163                 return -EFAULT;
1164         return 0;
1165 }
1166
1167 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1168 {
1169         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1170                 return -EFAULT;
1171         return 0;
1172 }
1173
1174 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1175 {
1176         struct sys_reg_params params;
1177         const struct sys_reg_desc *r;
1178
1179         if (!index_to_params(id, &params))
1180                 return -ENOENT;
1181
1182         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1183         if (!r)
1184                 return -ENOENT;
1185
1186         return reg_to_user(uaddr, &r->val, id);
1187 }
1188
1189 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1190 {
1191         struct sys_reg_params params;
1192         const struct sys_reg_desc *r;
1193         int err;
1194         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1195
1196         if (!index_to_params(id, &params))
1197                 return -ENOENT;
1198         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1199         if (!r)
1200                 return -ENOENT;
1201
1202         err = reg_from_user(&val, uaddr, id);
1203         if (err)
1204                 return err;
1205
1206         /* This is what we mean by invariant: you can't change it. */
1207         if (r->val != val)
1208                 return -EINVAL;
1209
1210         return 0;
1211 }
1212
1213 static bool is_valid_cache(u32 val)
1214 {
1215         u32 level, ctype;
1216
1217         if (val >= CSSELR_MAX)
1218                 return -ENOENT;
1219
1220         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1221         level = (val >> 1);
1222         ctype = (cache_levels >> (level * 3)) & 7;
1223
1224         switch (ctype) {
1225         case 0: /* No cache */
1226                 return false;
1227         case 1: /* Instruction cache only */
1228                 return (val & 1);
1229         case 2: /* Data cache only */
1230         case 4: /* Unified cache */
1231                 return !(val & 1);
1232         case 3: /* Separate instruction and data caches */
1233                 return true;
1234         default: /* Reserved: we can't know instruction or data. */
1235                 return false;
1236         }
1237 }
1238
1239 static int demux_c15_get(u64 id, void __user *uaddr)
1240 {
1241         u32 val;
1242         u32 __user *uval = uaddr;
1243
1244         /* Fail if we have unknown bits set. */
1245         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1246                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1247                 return -ENOENT;
1248
1249         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1250         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1251                 if (KVM_REG_SIZE(id) != 4)
1252                         return -ENOENT;
1253                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1254                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1255                 if (!is_valid_cache(val))
1256                         return -ENOENT;
1257
1258                 return put_user(get_ccsidr(val), uval);
1259         default:
1260                 return -ENOENT;
1261         }
1262 }
1263
1264 static int demux_c15_set(u64 id, void __user *uaddr)
1265 {
1266         u32 val, newval;
1267         u32 __user *uval = uaddr;
1268
1269         /* Fail if we have unknown bits set. */
1270         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1271                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1272                 return -ENOENT;
1273
1274         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1275         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1276                 if (KVM_REG_SIZE(id) != 4)
1277                         return -ENOENT;
1278                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1279                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1280                 if (!is_valid_cache(val))
1281                         return -ENOENT;
1282
1283                 if (get_user(newval, uval))
1284                         return -EFAULT;
1285
1286                 /* This is also invariant: you can't change it. */
1287                 if (newval != get_ccsidr(val))
1288                         return -EINVAL;
1289                 return 0;
1290         default:
1291                 return -ENOENT;
1292         }
1293 }
1294
1295 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1296 {
1297         const struct sys_reg_desc *r;
1298         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1299
1300         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1301                 return demux_c15_get(reg->id, uaddr);
1302
1303         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1304                 return -ENOENT;
1305
1306         r = index_to_sys_reg_desc(vcpu, reg->id);
1307         if (!r)
1308                 return get_invariant_sys_reg(reg->id, uaddr);
1309
1310         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1311 }
1312
1313 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1314 {
1315         const struct sys_reg_desc *r;
1316         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1317
1318         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1319                 return demux_c15_set(reg->id, uaddr);
1320
1321         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1322                 return -ENOENT;
1323
1324         r = index_to_sys_reg_desc(vcpu, reg->id);
1325         if (!r)
1326                 return set_invariant_sys_reg(reg->id, uaddr);
1327
1328         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1329 }
1330
1331 static unsigned int num_demux_regs(void)
1332 {
1333         unsigned int i, count = 0;
1334
1335         for (i = 0; i < CSSELR_MAX; i++)
1336                 if (is_valid_cache(i))
1337                         count++;
1338
1339         return count;
1340 }
1341
1342 static int write_demux_regids(u64 __user *uindices)
1343 {
1344         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1345         unsigned int i;
1346
1347         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1348         for (i = 0; i < CSSELR_MAX; i++) {
1349                 if (!is_valid_cache(i))
1350                         continue;
1351                 if (put_user(val | i, uindices))
1352                         return -EFAULT;
1353                 uindices++;
1354         }
1355         return 0;
1356 }
1357
1358 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1359 {
1360         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1361                 KVM_REG_ARM64_SYSREG |
1362                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1363                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1364                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1365                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1366                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1367 }
1368
1369 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1370 {
1371         if (!*uind)
1372                 return true;
1373
1374         if (put_user(sys_reg_to_index(reg), *uind))
1375                 return false;
1376
1377         (*uind)++;
1378         return true;
1379 }
1380
1381 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1382 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1383 {
1384         const struct sys_reg_desc *i1, *i2, *end1, *end2;
1385         unsigned int total = 0;
1386         size_t num;
1387
1388         /* We check for duplicates here, to allow arch-specific overrides. */
1389         i1 = get_target_table(vcpu->arch.target, true, &num);
1390         end1 = i1 + num;
1391         i2 = sys_reg_descs;
1392         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1393
1394         BUG_ON(i1 == end1 || i2 == end2);
1395
1396         /* Walk carefully, as both tables may refer to the same register. */
1397         while (i1 || i2) {
1398                 int cmp = cmp_sys_reg(i1, i2);
1399                 /* target-specific overrides generic entry. */
1400                 if (cmp <= 0) {
1401                         /* Ignore registers we trap but don't save. */
1402                         if (i1->reg) {
1403                                 if (!copy_reg_to_user(i1, &uind))
1404                                         return -EFAULT;
1405                                 total++;
1406                         }
1407                 } else {
1408                         /* Ignore registers we trap but don't save. */
1409                         if (i2->reg) {
1410                                 if (!copy_reg_to_user(i2, &uind))
1411                                         return -EFAULT;
1412                                 total++;
1413                         }
1414                 }
1415
1416                 if (cmp <= 0 && ++i1 == end1)
1417                         i1 = NULL;
1418                 if (cmp >= 0 && ++i2 == end2)
1419                         i2 = NULL;
1420         }
1421         return total;
1422 }
1423
1424 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1425 {
1426         return ARRAY_SIZE(invariant_sys_regs)
1427                 + num_demux_regs()
1428                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1429 }
1430
1431 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1432 {
1433         unsigned int i;
1434         int err;
1435
1436         /* Then give them all the invariant registers' indices. */
1437         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1438                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1439                         return -EFAULT;
1440                 uindices++;
1441         }
1442
1443         err = walk_sys_regs(vcpu, uindices);
1444         if (err < 0)
1445                 return err;
1446         uindices += err;
1447
1448         return write_demux_regids(uindices);
1449 }
1450
1451 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1452 {
1453         unsigned int i;
1454
1455         for (i = 1; i < n; i++) {
1456                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1457                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1458                         return 1;
1459                 }
1460         }
1461
1462         return 0;
1463 }
1464
1465 void kvm_sys_reg_table_init(void)
1466 {
1467         unsigned int i;
1468         struct sys_reg_desc clidr;
1469
1470         /* Make sure tables are unique and in order. */
1471         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1472         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1473         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1474         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1475         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1476         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1477
1478         /* We abuse the reset function to overwrite the table itself. */
1479         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1480                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1481
1482         /*
1483          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1484          *
1485          *   If software reads the Cache Type fields from Ctype1
1486          *   upwards, once it has seen a value of 0b000, no caches
1487          *   exist at further-out levels of the hierarchy. So, for
1488          *   example, if Ctype3 is the first Cache Type field with a
1489          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1490          *   ignored.
1491          */
1492         get_clidr_el1(NULL, &clidr); /* Ugly... */
1493         cache_levels = clidr.val;
1494         for (i = 0; i < 7; i++)
1495                 if (((cache_levels >> (i*3)) & 7) == 0)
1496                         break;
1497         /* Clear all higher bits. */
1498         cache_levels &= (1 << (i*3))-1;
1499 }
1500
1501 /**
1502  * kvm_reset_sys_regs - sets system registers to reset value
1503  * @vcpu: The VCPU pointer
1504  *
1505  * This function finds the right table above and sets the registers on the
1506  * virtual CPU struct to their architecturally defined reset values.
1507  */
1508 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1509 {
1510         size_t num;
1511         const struct sys_reg_desc *table;
1512
1513         /* Catch someone adding a register without putting in reset entry. */
1514         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1515
1516         /* Generic chip reset first (so target could override). */
1517         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1518
1519         table = get_target_table(vcpu->arch.target, true, &num);
1520         reset_sys_reg_descs(vcpu, table, num);
1521
1522         for (num = 1; num < NR_SYS_REGS; num++)
1523                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1524                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
1525 }