Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[firefly-linux-kernel-4.4.55.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/mm.h>
24 #include <linux/kvm_host.h>
25 #include <linux/uaccess.h>
26 #include <asm/kvm_arm.h>
27 #include <asm/kvm_host.h>
28 #include <asm/kvm_emulate.h>
29 #include <asm/kvm_coproc.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cputype.h>
33 #include <asm/debug-monitors.h>
34 #include <trace/events/kvm.h>
35
36 #include "sys_regs.h"
37
38 /*
39  * All of this file is extremly similar to the ARM coproc.c, but the
40  * types are different. My gut feeling is that it should be pretty
41  * easy to merge, but that would be an ABI breakage -- again. VFP
42  * would also need to be abstracted.
43  *
44  * For AArch32, we only take care of what is being trapped. Anything
45  * that has to do with init and userspace access has to go via the
46  * 64bit interface.
47  */
48
49 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
50 static u32 cache_levels;
51
52 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
53 #define CSSELR_MAX 12
54
55 /* Which cache CCSIDR represents depends on CSSELR value. */
56 static u32 get_ccsidr(u32 csselr)
57 {
58         u32 ccsidr;
59
60         /* Make sure noone else changes CSSELR during this! */
61         local_irq_disable();
62         /* Put value into CSSELR */
63         asm volatile("msr csselr_el1, %x0" : : "r" (csselr));
64         isb();
65         /* Read result out of CCSIDR */
66         asm volatile("mrs %0, ccsidr_el1" : "=r" (ccsidr));
67         local_irq_enable();
68
69         return ccsidr;
70 }
71
72 static void do_dc_cisw(u32 val)
73 {
74         asm volatile("dc cisw, %x0" : : "r" (val));
75         dsb(ish);
76 }
77
78 static void do_dc_csw(u32 val)
79 {
80         asm volatile("dc csw, %x0" : : "r" (val));
81         dsb(ish);
82 }
83
84 /* See note at ARM ARM B1.14.4 */
85 static bool access_dcsw(struct kvm_vcpu *vcpu,
86                         const struct sys_reg_params *p,
87                         const struct sys_reg_desc *r)
88 {
89         unsigned long val;
90         int cpu;
91
92         if (!p->is_write)
93                 return read_from_write_only(vcpu, p);
94
95         cpu = get_cpu();
96
97         cpumask_setall(&vcpu->arch.require_dcache_flush);
98         cpumask_clear_cpu(cpu, &vcpu->arch.require_dcache_flush);
99
100         /* If we were already preempted, take the long way around */
101         if (cpu != vcpu->arch.last_pcpu) {
102                 flush_cache_all();
103                 goto done;
104         }
105
106         val = *vcpu_reg(vcpu, p->Rt);
107
108         switch (p->CRm) {
109         case 6:                 /* Upgrade DCISW to DCCISW, as per HCR.SWIO */
110         case 14:                /* DCCISW */
111                 do_dc_cisw(val);
112                 break;
113
114         case 10:                /* DCCSW */
115                 do_dc_csw(val);
116                 break;
117         }
118
119 done:
120         put_cpu();
121
122         return true;
123 }
124
125 /*
126  * Generic accessor for VM registers. Only called as long as HCR_TVM
127  * is set.
128  */
129 static bool access_vm_reg(struct kvm_vcpu *vcpu,
130                           const struct sys_reg_params *p,
131                           const struct sys_reg_desc *r)
132 {
133         unsigned long val;
134
135         BUG_ON(!p->is_write);
136
137         val = *vcpu_reg(vcpu, p->Rt);
138         if (!p->is_aarch32) {
139                 vcpu_sys_reg(vcpu, r->reg) = val;
140         } else {
141                 if (!p->is_32bit)
142                         vcpu_cp15_64_high(vcpu, r->reg) = val >> 32;
143                 vcpu_cp15_64_low(vcpu, r->reg) = val & 0xffffffffUL;
144         }
145
146         return true;
147 }
148
149 /*
150  * SCTLR_EL1 accessor. Only called as long as HCR_TVM is set.  If the
151  * guest enables the MMU, we stop trapping the VM sys_regs and leave
152  * it in complete control of the caches.
153  */
154 static bool access_sctlr(struct kvm_vcpu *vcpu,
155                          const struct sys_reg_params *p,
156                          const struct sys_reg_desc *r)
157 {
158         access_vm_reg(vcpu, p, r);
159
160         if (vcpu_has_cache_enabled(vcpu)) {     /* MMU+Caches enabled? */
161                 vcpu->arch.hcr_el2 &= ~HCR_TVM;
162                 stage2_flush_vm(vcpu->kvm);
163         }
164
165         return true;
166 }
167
168 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
169                         const struct sys_reg_params *p,
170                         const struct sys_reg_desc *r)
171 {
172         if (p->is_write)
173                 return ignore_write(vcpu, p);
174         else
175                 return read_zero(vcpu, p);
176 }
177
178 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
179                            const struct sys_reg_params *p,
180                            const struct sys_reg_desc *r)
181 {
182         if (p->is_write) {
183                 return ignore_write(vcpu, p);
184         } else {
185                 *vcpu_reg(vcpu, p->Rt) = (1 << 3);
186                 return true;
187         }
188 }
189
190 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
191                                    const struct sys_reg_params *p,
192                                    const struct sys_reg_desc *r)
193 {
194         if (p->is_write) {
195                 return ignore_write(vcpu, p);
196         } else {
197                 u32 val;
198                 asm volatile("mrs %0, dbgauthstatus_el1" : "=r" (val));
199                 *vcpu_reg(vcpu, p->Rt) = val;
200                 return true;
201         }
202 }
203
204 /*
205  * We want to avoid world-switching all the DBG registers all the
206  * time:
207  * 
208  * - If we've touched any debug register, it is likely that we're
209  *   going to touch more of them. It then makes sense to disable the
210  *   traps and start doing the save/restore dance
211  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
212  *   then mandatory to save/restore the registers, as the guest
213  *   depends on them.
214  * 
215  * For this, we use a DIRTY bit, indicating the guest has modified the
216  * debug registers, used as follow:
217  *
218  * On guest entry:
219  * - If the dirty bit is set (because we're coming back from trapping),
220  *   disable the traps, save host registers, restore guest registers.
221  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
222  *   set the dirty bit, disable the traps, save host registers,
223  *   restore guest registers.
224  * - Otherwise, enable the traps
225  *
226  * On guest exit:
227  * - If the dirty bit is set, save guest registers, restore host
228  *   registers and clear the dirty bit. This ensure that the host can
229  *   now use the debug registers.
230  */
231 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
232                             const struct sys_reg_params *p,
233                             const struct sys_reg_desc *r)
234 {
235         if (p->is_write) {
236                 vcpu_sys_reg(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
237                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
238         } else {
239                 *vcpu_reg(vcpu, p->Rt) = vcpu_sys_reg(vcpu, r->reg);
240         }
241
242         return true;
243 }
244
245 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
246 {
247         u64 amair;
248
249         asm volatile("mrs %0, amair_el1\n" : "=r" (amair));
250         vcpu_sys_reg(vcpu, AMAIR_EL1) = amair;
251 }
252
253 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
254 {
255         /*
256          * Simply map the vcpu_id into the Aff0 field of the MPIDR.
257          */
258         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1UL << 31) | (vcpu->vcpu_id & 0xff);
259 }
260
261 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
262 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
263         /* DBGBVRn_EL1 */                                               \
264         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),     \
265           trap_debug_regs, reset_val, (DBGBVR0_EL1 + (n)), 0 },         \
266         /* DBGBCRn_EL1 */                                               \
267         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),     \
268           trap_debug_regs, reset_val, (DBGBCR0_EL1 + (n)), 0 },         \
269         /* DBGWVRn_EL1 */                                               \
270         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),     \
271           trap_debug_regs, reset_val, (DBGWVR0_EL1 + (n)), 0 },         \
272         /* DBGWCRn_EL1 */                                               \
273         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),     \
274           trap_debug_regs, reset_val, (DBGWCR0_EL1 + (n)), 0 }
275
276 /*
277  * Architected system registers.
278  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
279  *
280  * We could trap ID_DFR0 and tell the guest we don't support performance
281  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
282  * NAKed, so it will read the PMCR anyway.
283  *
284  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
285  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
286  * all PM registers, which doesn't crash the guest kernel at least.
287  *
288  * Debug handling: We do trap most, if not all debug related system
289  * registers. The implementation is good enough to ensure that a guest
290  * can use these with minimal performance degradation. The drawback is
291  * that we don't implement any of the external debug, none of the
292  * OSlock protocol. This should be revisited if we ever encounter a
293  * more demanding guest...
294  */
295 static const struct sys_reg_desc sys_reg_descs[] = {
296         /* DC ISW */
297         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
298           access_dcsw },
299         /* DC CSW */
300         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
301           access_dcsw },
302         /* DC CISW */
303         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
304           access_dcsw },
305
306         DBG_BCR_BVR_WCR_WVR_EL1(0),
307         DBG_BCR_BVR_WCR_WVR_EL1(1),
308         /* MDCCINT_EL1 */
309         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
310           trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
311         /* MDSCR_EL1 */
312         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
313           trap_debug_regs, reset_val, MDSCR_EL1, 0 },
314         DBG_BCR_BVR_WCR_WVR_EL1(2),
315         DBG_BCR_BVR_WCR_WVR_EL1(3),
316         DBG_BCR_BVR_WCR_WVR_EL1(4),
317         DBG_BCR_BVR_WCR_WVR_EL1(5),
318         DBG_BCR_BVR_WCR_WVR_EL1(6),
319         DBG_BCR_BVR_WCR_WVR_EL1(7),
320         DBG_BCR_BVR_WCR_WVR_EL1(8),
321         DBG_BCR_BVR_WCR_WVR_EL1(9),
322         DBG_BCR_BVR_WCR_WVR_EL1(10),
323         DBG_BCR_BVR_WCR_WVR_EL1(11),
324         DBG_BCR_BVR_WCR_WVR_EL1(12),
325         DBG_BCR_BVR_WCR_WVR_EL1(13),
326         DBG_BCR_BVR_WCR_WVR_EL1(14),
327         DBG_BCR_BVR_WCR_WVR_EL1(15),
328
329         /* MDRAR_EL1 */
330         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
331           trap_raz_wi },
332         /* OSLAR_EL1 */
333         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
334           trap_raz_wi },
335         /* OSLSR_EL1 */
336         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
337           trap_oslsr_el1 },
338         /* OSDLR_EL1 */
339         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
340           trap_raz_wi },
341         /* DBGPRCR_EL1 */
342         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
343           trap_raz_wi },
344         /* DBGCLAIMSET_EL1 */
345         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
346           trap_raz_wi },
347         /* DBGCLAIMCLR_EL1 */
348         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
349           trap_raz_wi },
350         /* DBGAUTHSTATUS_EL1 */
351         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
352           trap_dbgauthstatus_el1 },
353
354         /* TEECR32_EL1 */
355         { Op0(0b10), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
356           NULL, reset_val, TEECR32_EL1, 0 },
357         /* TEEHBR32_EL1 */
358         { Op0(0b10), Op1(0b010), CRn(0b0001), CRm(0b0000), Op2(0b000),
359           NULL, reset_val, TEEHBR32_EL1, 0 },
360
361         /* MDCCSR_EL1 */
362         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
363           trap_raz_wi },
364         /* DBGDTR_EL0 */
365         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
366           trap_raz_wi },
367         /* DBGDTR[TR]X_EL0 */
368         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
369           trap_raz_wi },
370
371         /* DBGVCR32_EL2 */
372         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
373           NULL, reset_val, DBGVCR32_EL2, 0 },
374
375         /* MPIDR_EL1 */
376         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
377           NULL, reset_mpidr, MPIDR_EL1 },
378         /* SCTLR_EL1 */
379         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
380           access_sctlr, reset_val, SCTLR_EL1, 0x00C50078 },
381         /* CPACR_EL1 */
382         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
383           NULL, reset_val, CPACR_EL1, 0 },
384         /* TTBR0_EL1 */
385         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
386           access_vm_reg, reset_unknown, TTBR0_EL1 },
387         /* TTBR1_EL1 */
388         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
389           access_vm_reg, reset_unknown, TTBR1_EL1 },
390         /* TCR_EL1 */
391         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
392           access_vm_reg, reset_val, TCR_EL1, 0 },
393
394         /* AFSR0_EL1 */
395         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
396           access_vm_reg, reset_unknown, AFSR0_EL1 },
397         /* AFSR1_EL1 */
398         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
399           access_vm_reg, reset_unknown, AFSR1_EL1 },
400         /* ESR_EL1 */
401         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
402           access_vm_reg, reset_unknown, ESR_EL1 },
403         /* FAR_EL1 */
404         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
405           access_vm_reg, reset_unknown, FAR_EL1 },
406         /* PAR_EL1 */
407         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
408           NULL, reset_unknown, PAR_EL1 },
409
410         /* PMINTENSET_EL1 */
411         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
412           trap_raz_wi },
413         /* PMINTENCLR_EL1 */
414         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
415           trap_raz_wi },
416
417         /* MAIR_EL1 */
418         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
419           access_vm_reg, reset_unknown, MAIR_EL1 },
420         /* AMAIR_EL1 */
421         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
422           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
423
424         /* VBAR_EL1 */
425         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
426           NULL, reset_val, VBAR_EL1, 0 },
427         /* CONTEXTIDR_EL1 */
428         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
429           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
430         /* TPIDR_EL1 */
431         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
432           NULL, reset_unknown, TPIDR_EL1 },
433
434         /* CNTKCTL_EL1 */
435         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
436           NULL, reset_val, CNTKCTL_EL1, 0},
437
438         /* CSSELR_EL1 */
439         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
440           NULL, reset_unknown, CSSELR_EL1 },
441
442         /* PMCR_EL0 */
443         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
444           trap_raz_wi },
445         /* PMCNTENSET_EL0 */
446         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
447           trap_raz_wi },
448         /* PMCNTENCLR_EL0 */
449         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
450           trap_raz_wi },
451         /* PMOVSCLR_EL0 */
452         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
453           trap_raz_wi },
454         /* PMSWINC_EL0 */
455         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
456           trap_raz_wi },
457         /* PMSELR_EL0 */
458         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
459           trap_raz_wi },
460         /* PMCEID0_EL0 */
461         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
462           trap_raz_wi },
463         /* PMCEID1_EL0 */
464         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
465           trap_raz_wi },
466         /* PMCCNTR_EL0 */
467         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
468           trap_raz_wi },
469         /* PMXEVTYPER_EL0 */
470         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
471           trap_raz_wi },
472         /* PMXEVCNTR_EL0 */
473         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
474           trap_raz_wi },
475         /* PMUSERENR_EL0 */
476         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
477           trap_raz_wi },
478         /* PMOVSSET_EL0 */
479         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
480           trap_raz_wi },
481
482         /* TPIDR_EL0 */
483         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
484           NULL, reset_unknown, TPIDR_EL0 },
485         /* TPIDRRO_EL0 */
486         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
487           NULL, reset_unknown, TPIDRRO_EL0 },
488
489         /* DACR32_EL2 */
490         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
491           NULL, reset_unknown, DACR32_EL2 },
492         /* IFSR32_EL2 */
493         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
494           NULL, reset_unknown, IFSR32_EL2 },
495         /* FPEXC32_EL2 */
496         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
497           NULL, reset_val, FPEXC32_EL2, 0x70 },
498 };
499
500 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
501                         const struct sys_reg_params *p,
502                         const struct sys_reg_desc *r)
503 {
504         if (p->is_write) {
505                 return ignore_write(vcpu, p);
506         } else {
507                 u64 dfr = read_cpuid(ID_AA64DFR0_EL1);
508                 u64 pfr = read_cpuid(ID_AA64PFR0_EL1);
509                 u32 el3 = !!((pfr >> 12) & 0xf);
510
511                 *vcpu_reg(vcpu, p->Rt) = ((((dfr >> 20) & 0xf) << 28) |
512                                           (((dfr >> 12) & 0xf) << 24) |
513                                           (((dfr >> 28) & 0xf) << 20) |
514                                           (6 << 16) | (el3 << 14) | (el3 << 12));
515                 return true;
516         }
517 }
518
519 static bool trap_debug32(struct kvm_vcpu *vcpu,
520                          const struct sys_reg_params *p,
521                          const struct sys_reg_desc *r)
522 {
523         if (p->is_write) {
524                 vcpu_cp14(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt);
525                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
526         } else {
527                 *vcpu_reg(vcpu, p->Rt) = vcpu_cp14(vcpu, r->reg);
528         }
529
530         return true;
531 }
532
533 #define DBG_BCR_BVR_WCR_WVR(n)                                  \
534         /* DBGBVRn */                                           \
535         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_debug32,    \
536           NULL, (cp14_DBGBVR0 + (n) * 2) },                     \
537         /* DBGBCRn */                                           \
538         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_debug32,    \
539           NULL, (cp14_DBGBCR0 + (n) * 2) },                     \
540         /* DBGWVRn */                                           \
541         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_debug32,    \
542           NULL, (cp14_DBGWVR0 + (n) * 2) },                     \
543         /* DBGWCRn */                                           \
544         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_debug32,    \
545           NULL, (cp14_DBGWCR0 + (n) * 2) }
546
547 #define DBGBXVR(n)                                              \
548         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_debug32,    \
549           NULL, cp14_DBGBXVR0 + n * 2 }
550
551 /*
552  * Trapped cp14 registers. We generally ignore most of the external
553  * debug, on the principle that they don't really make sense to a
554  * guest. Revisit this one day, whould this principle change.
555  */
556 static const struct sys_reg_desc cp14_regs[] = {
557         /* DBGIDR */
558         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
559         /* DBGDTRRXext */
560         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
561
562         DBG_BCR_BVR_WCR_WVR(0),
563         /* DBGDSCRint */
564         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
565         DBG_BCR_BVR_WCR_WVR(1),
566         /* DBGDCCINT */
567         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
568         /* DBGDSCRext */
569         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
570         DBG_BCR_BVR_WCR_WVR(2),
571         /* DBGDTR[RT]Xint */
572         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
573         /* DBGDTR[RT]Xext */
574         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
575         DBG_BCR_BVR_WCR_WVR(3),
576         DBG_BCR_BVR_WCR_WVR(4),
577         DBG_BCR_BVR_WCR_WVR(5),
578         /* DBGWFAR */
579         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
580         /* DBGOSECCR */
581         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
582         DBG_BCR_BVR_WCR_WVR(6),
583         /* DBGVCR */
584         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
585         DBG_BCR_BVR_WCR_WVR(7),
586         DBG_BCR_BVR_WCR_WVR(8),
587         DBG_BCR_BVR_WCR_WVR(9),
588         DBG_BCR_BVR_WCR_WVR(10),
589         DBG_BCR_BVR_WCR_WVR(11),
590         DBG_BCR_BVR_WCR_WVR(12),
591         DBG_BCR_BVR_WCR_WVR(13),
592         DBG_BCR_BVR_WCR_WVR(14),
593         DBG_BCR_BVR_WCR_WVR(15),
594
595         /* DBGDRAR (32bit) */
596         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
597
598         DBGBXVR(0),
599         /* DBGOSLAR */
600         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
601         DBGBXVR(1),
602         /* DBGOSLSR */
603         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
604         DBGBXVR(2),
605         DBGBXVR(3),
606         /* DBGOSDLR */
607         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
608         DBGBXVR(4),
609         /* DBGPRCR */
610         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
611         DBGBXVR(5),
612         DBGBXVR(6),
613         DBGBXVR(7),
614         DBGBXVR(8),
615         DBGBXVR(9),
616         DBGBXVR(10),
617         DBGBXVR(11),
618         DBGBXVR(12),
619         DBGBXVR(13),
620         DBGBXVR(14),
621         DBGBXVR(15),
622
623         /* DBGDSAR (32bit) */
624         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
625
626         /* DBGDEVID2 */
627         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
628         /* DBGDEVID1 */
629         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
630         /* DBGDEVID */
631         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
632         /* DBGCLAIMSET */
633         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
634         /* DBGCLAIMCLR */
635         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
636         /* DBGAUTHSTATUS */
637         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
638 };
639
640 /* Trapped cp14 64bit registers */
641 static const struct sys_reg_desc cp14_64_regs[] = {
642         /* DBGDRAR (64bit) */
643         { Op1( 0), CRm( 1), .access = trap_raz_wi },
644
645         /* DBGDSAR (64bit) */
646         { Op1( 0), CRm( 2), .access = trap_raz_wi },
647 };
648
649 /*
650  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
651  * depending on the way they are accessed (as a 32bit or a 64bit
652  * register).
653  */
654 static const struct sys_reg_desc cp15_regs[] = {
655         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_sctlr, NULL, c1_SCTLR },
656         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
657         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
658         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
659         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
660         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
661         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
662         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
663         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
664         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
665         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
666
667         /*
668          * DC{C,I,CI}SW operations:
669          */
670         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
671         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
672         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
673
674         /* PMU */
675         { Op1( 0), CRn( 9), CRm(12), Op2( 0), trap_raz_wi },
676         { Op1( 0), CRn( 9), CRm(12), Op2( 1), trap_raz_wi },
677         { Op1( 0), CRn( 9), CRm(12), Op2( 2), trap_raz_wi },
678         { Op1( 0), CRn( 9), CRm(12), Op2( 3), trap_raz_wi },
679         { Op1( 0), CRn( 9), CRm(12), Op2( 5), trap_raz_wi },
680         { Op1( 0), CRn( 9), CRm(12), Op2( 6), trap_raz_wi },
681         { Op1( 0), CRn( 9), CRm(12), Op2( 7), trap_raz_wi },
682         { Op1( 0), CRn( 9), CRm(13), Op2( 0), trap_raz_wi },
683         { Op1( 0), CRn( 9), CRm(13), Op2( 1), trap_raz_wi },
684         { Op1( 0), CRn( 9), CRm(13), Op2( 2), trap_raz_wi },
685         { Op1( 0), CRn( 9), CRm(14), Op2( 0), trap_raz_wi },
686         { Op1( 0), CRn( 9), CRm(14), Op2( 1), trap_raz_wi },
687         { Op1( 0), CRn( 9), CRm(14), Op2( 2), trap_raz_wi },
688
689         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
690         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
691         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
692         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
693         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
694 };
695
696 static const struct sys_reg_desc cp15_64_regs[] = {
697         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
698         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
699 };
700
701 /* Target specific emulation tables */
702 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
703
704 void kvm_register_target_sys_reg_table(unsigned int target,
705                                        struct kvm_sys_reg_target_table *table)
706 {
707         target_tables[target] = table;
708 }
709
710 /* Get specific register table for this target. */
711 static const struct sys_reg_desc *get_target_table(unsigned target,
712                                                    bool mode_is_64,
713                                                    size_t *num)
714 {
715         struct kvm_sys_reg_target_table *table;
716
717         table = target_tables[target];
718         if (mode_is_64) {
719                 *num = table->table64.num;
720                 return table->table64.table;
721         } else {
722                 *num = table->table32.num;
723                 return table->table32.table;
724         }
725 }
726
727 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
728                                          const struct sys_reg_desc table[],
729                                          unsigned int num)
730 {
731         unsigned int i;
732
733         for (i = 0; i < num; i++) {
734                 const struct sys_reg_desc *r = &table[i];
735
736                 if (params->Op0 != r->Op0)
737                         continue;
738                 if (params->Op1 != r->Op1)
739                         continue;
740                 if (params->CRn != r->CRn)
741                         continue;
742                 if (params->CRm != r->CRm)
743                         continue;
744                 if (params->Op2 != r->Op2)
745                         continue;
746
747                 return r;
748         }
749         return NULL;
750 }
751
752 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
753 {
754         kvm_inject_undefined(vcpu);
755         return 1;
756 }
757
758 /*
759  * emulate_cp --  tries to match a sys_reg access in a handling table, and
760  *                call the corresponding trap handler.
761  *
762  * @params: pointer to the descriptor of the access
763  * @table: array of trap descriptors
764  * @num: size of the trap descriptor array
765  *
766  * Return 0 if the access has been handled, and -1 if not.
767  */
768 static int emulate_cp(struct kvm_vcpu *vcpu,
769                       const struct sys_reg_params *params,
770                       const struct sys_reg_desc *table,
771                       size_t num)
772 {
773         const struct sys_reg_desc *r;
774
775         if (!table)
776                 return -1;      /* Not handled */
777
778         r = find_reg(params, table, num);
779
780         if (r) {
781                 /*
782                  * Not having an accessor means that we have
783                  * configured a trap that we don't know how to
784                  * handle. This certainly qualifies as a gross bug
785                  * that should be fixed right away.
786                  */
787                 BUG_ON(!r->access);
788
789                 if (likely(r->access(vcpu, params, r))) {
790                         /* Skip instruction, since it was emulated */
791                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
792                 }
793
794                 /* Handled */
795                 return 0;
796         }
797
798         /* Not handled */
799         return -1;
800 }
801
802 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
803                                 struct sys_reg_params *params)
804 {
805         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
806         int cp;
807
808         switch(hsr_ec) {
809         case ESR_EL2_EC_CP15_32:
810         case ESR_EL2_EC_CP15_64:
811                 cp = 15;
812                 break;
813         case ESR_EL2_EC_CP14_MR:
814         case ESR_EL2_EC_CP14_64:
815                 cp = 14;
816                 break;
817         default:
818                 WARN_ON((cp = -1));
819         }
820
821         kvm_err("Unsupported guest CP%d access at: %08lx\n",
822                 cp, *vcpu_pc(vcpu));
823         print_sys_reg_instr(params);
824         kvm_inject_undefined(vcpu);
825 }
826
827 /**
828  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP15 access
829  * @vcpu: The VCPU pointer
830  * @run:  The kvm_run struct
831  */
832 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
833                             const struct sys_reg_desc *global,
834                             size_t nr_global,
835                             const struct sys_reg_desc *target_specific,
836                             size_t nr_specific)
837 {
838         struct sys_reg_params params;
839         u32 hsr = kvm_vcpu_get_hsr(vcpu);
840         int Rt2 = (hsr >> 10) & 0xf;
841
842         params.is_aarch32 = true;
843         params.is_32bit = false;
844         params.CRm = (hsr >> 1) & 0xf;
845         params.Rt = (hsr >> 5) & 0xf;
846         params.is_write = ((hsr & 1) == 0);
847
848         params.Op0 = 0;
849         params.Op1 = (hsr >> 16) & 0xf;
850         params.Op2 = 0;
851         params.CRn = 0;
852
853         /*
854          * Massive hack here. Store Rt2 in the top 32bits so we only
855          * have one register to deal with. As we use the same trap
856          * backends between AArch32 and AArch64, we get away with it.
857          */
858         if (params.is_write) {
859                 u64 val = *vcpu_reg(vcpu, params.Rt);
860                 val &= 0xffffffff;
861                 val |= *vcpu_reg(vcpu, Rt2) << 32;
862                 *vcpu_reg(vcpu, params.Rt) = val;
863         }
864
865         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
866                 goto out;
867         if (!emulate_cp(vcpu, &params, global, nr_global))
868                 goto out;
869
870         unhandled_cp_access(vcpu, &params);
871
872 out:
873         /* Do the opposite hack for the read side */
874         if (!params.is_write) {
875                 u64 val = *vcpu_reg(vcpu, params.Rt);
876                 val >>= 32;
877                 *vcpu_reg(vcpu, Rt2) = val;
878         }
879
880         return 1;
881 }
882
883 /**
884  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
885  * @vcpu: The VCPU pointer
886  * @run:  The kvm_run struct
887  */
888 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
889                             const struct sys_reg_desc *global,
890                             size_t nr_global,
891                             const struct sys_reg_desc *target_specific,
892                             size_t nr_specific)
893 {
894         struct sys_reg_params params;
895         u32 hsr = kvm_vcpu_get_hsr(vcpu);
896
897         params.is_aarch32 = true;
898         params.is_32bit = true;
899         params.CRm = (hsr >> 1) & 0xf;
900         params.Rt  = (hsr >> 5) & 0xf;
901         params.is_write = ((hsr & 1) == 0);
902         params.CRn = (hsr >> 10) & 0xf;
903         params.Op0 = 0;
904         params.Op1 = (hsr >> 14) & 0x7;
905         params.Op2 = (hsr >> 17) & 0x7;
906
907         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
908                 return 1;
909         if (!emulate_cp(vcpu, &params, global, nr_global))
910                 return 1;
911
912         unhandled_cp_access(vcpu, &params);
913         return 1;
914 }
915
916 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
917 {
918         const struct sys_reg_desc *target_specific;
919         size_t num;
920
921         target_specific = get_target_table(vcpu->arch.target, false, &num);
922         return kvm_handle_cp_64(vcpu,
923                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
924                                 target_specific, num);
925 }
926
927 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
928 {
929         const struct sys_reg_desc *target_specific;
930         size_t num;
931
932         target_specific = get_target_table(vcpu->arch.target, false, &num);
933         return kvm_handle_cp_32(vcpu,
934                                 cp15_regs, ARRAY_SIZE(cp15_regs),
935                                 target_specific, num);
936 }
937
938 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
939 {
940         return kvm_handle_cp_64(vcpu,
941                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
942                                 NULL, 0);
943 }
944
945 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
946 {
947         return kvm_handle_cp_32(vcpu,
948                                 cp14_regs, ARRAY_SIZE(cp14_regs),
949                                 NULL, 0);
950 }
951
952 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
953                            const struct sys_reg_params *params)
954 {
955         size_t num;
956         const struct sys_reg_desc *table, *r;
957
958         table = get_target_table(vcpu->arch.target, true, &num);
959
960         /* Search target-specific then generic table. */
961         r = find_reg(params, table, num);
962         if (!r)
963                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
964
965         if (likely(r)) {
966                 /*
967                  * Not having an accessor means that we have
968                  * configured a trap that we don't know how to
969                  * handle. This certainly qualifies as a gross bug
970                  * that should be fixed right away.
971                  */
972                 BUG_ON(!r->access);
973
974                 if (likely(r->access(vcpu, params, r))) {
975                         /* Skip instruction, since it was emulated */
976                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
977                         return 1;
978                 }
979                 /* If access function fails, it should complain. */
980         } else {
981                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
982                         *vcpu_pc(vcpu));
983                 print_sys_reg_instr(params);
984         }
985         kvm_inject_undefined(vcpu);
986         return 1;
987 }
988
989 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
990                               const struct sys_reg_desc *table, size_t num)
991 {
992         unsigned long i;
993
994         for (i = 0; i < num; i++)
995                 if (table[i].reset)
996                         table[i].reset(vcpu, &table[i]);
997 }
998
999 /**
1000  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1001  * @vcpu: The VCPU pointer
1002  * @run:  The kvm_run struct
1003  */
1004 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1005 {
1006         struct sys_reg_params params;
1007         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1008
1009         params.is_aarch32 = false;
1010         params.is_32bit = false;
1011         params.Op0 = (esr >> 20) & 3;
1012         params.Op1 = (esr >> 14) & 0x7;
1013         params.CRn = (esr >> 10) & 0xf;
1014         params.CRm = (esr >> 1) & 0xf;
1015         params.Op2 = (esr >> 17) & 0x7;
1016         params.Rt = (esr >> 5) & 0x1f;
1017         params.is_write = !(esr & 1);
1018
1019         return emulate_sys_reg(vcpu, &params);
1020 }
1021
1022 /******************************************************************************
1023  * Userspace API
1024  *****************************************************************************/
1025
1026 static bool index_to_params(u64 id, struct sys_reg_params *params)
1027 {
1028         switch (id & KVM_REG_SIZE_MASK) {
1029         case KVM_REG_SIZE_U64:
1030                 /* Any unused index bits means it's not valid. */
1031                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1032                               | KVM_REG_ARM_COPROC_MASK
1033                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1034                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1035                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1036                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1037                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1038                         return false;
1039                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1040                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1041                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1042                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1043                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1044                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1045                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1046                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1047                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1048                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1049                 return true;
1050         default:
1051                 return false;
1052         }
1053 }
1054
1055 /* Decode an index value, and find the sys_reg_desc entry. */
1056 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1057                                                     u64 id)
1058 {
1059         size_t num;
1060         const struct sys_reg_desc *table, *r;
1061         struct sys_reg_params params;
1062
1063         /* We only do sys_reg for now. */
1064         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1065                 return NULL;
1066
1067         if (!index_to_params(id, &params))
1068                 return NULL;
1069
1070         table = get_target_table(vcpu->arch.target, true, &num);
1071         r = find_reg(&params, table, num);
1072         if (!r)
1073                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1074
1075         /* Not saved in the sys_reg array? */
1076         if (r && !r->reg)
1077                 r = NULL;
1078
1079         return r;
1080 }
1081
1082 /*
1083  * These are the invariant sys_reg registers: we let the guest see the
1084  * host versions of these, so they're part of the guest state.
1085  *
1086  * A future CPU may provide a mechanism to present different values to
1087  * the guest, or a future kvm may trap them.
1088  */
1089
1090 #define FUNCTION_INVARIANT(reg)                                         \
1091         static void get_##reg(struct kvm_vcpu *v,                       \
1092                               const struct sys_reg_desc *r)             \
1093         {                                                               \
1094                 u64 val;                                                \
1095                                                                         \
1096                 asm volatile("mrs %0, " __stringify(reg) "\n"           \
1097                              : "=r" (val));                             \
1098                 ((struct sys_reg_desc *)r)->val = val;                  \
1099         }
1100
1101 FUNCTION_INVARIANT(midr_el1)
1102 FUNCTION_INVARIANT(ctr_el0)
1103 FUNCTION_INVARIANT(revidr_el1)
1104 FUNCTION_INVARIANT(id_pfr0_el1)
1105 FUNCTION_INVARIANT(id_pfr1_el1)
1106 FUNCTION_INVARIANT(id_dfr0_el1)
1107 FUNCTION_INVARIANT(id_afr0_el1)
1108 FUNCTION_INVARIANT(id_mmfr0_el1)
1109 FUNCTION_INVARIANT(id_mmfr1_el1)
1110 FUNCTION_INVARIANT(id_mmfr2_el1)
1111 FUNCTION_INVARIANT(id_mmfr3_el1)
1112 FUNCTION_INVARIANT(id_isar0_el1)
1113 FUNCTION_INVARIANT(id_isar1_el1)
1114 FUNCTION_INVARIANT(id_isar2_el1)
1115 FUNCTION_INVARIANT(id_isar3_el1)
1116 FUNCTION_INVARIANT(id_isar4_el1)
1117 FUNCTION_INVARIANT(id_isar5_el1)
1118 FUNCTION_INVARIANT(clidr_el1)
1119 FUNCTION_INVARIANT(aidr_el1)
1120
1121 /* ->val is filled in by kvm_sys_reg_table_init() */
1122 static struct sys_reg_desc invariant_sys_regs[] = {
1123         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1124           NULL, get_midr_el1 },
1125         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1126           NULL, get_revidr_el1 },
1127         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1128           NULL, get_id_pfr0_el1 },
1129         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1130           NULL, get_id_pfr1_el1 },
1131         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1132           NULL, get_id_dfr0_el1 },
1133         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1134           NULL, get_id_afr0_el1 },
1135         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1136           NULL, get_id_mmfr0_el1 },
1137         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1138           NULL, get_id_mmfr1_el1 },
1139         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1140           NULL, get_id_mmfr2_el1 },
1141         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1142           NULL, get_id_mmfr3_el1 },
1143         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1144           NULL, get_id_isar0_el1 },
1145         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1146           NULL, get_id_isar1_el1 },
1147         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1148           NULL, get_id_isar2_el1 },
1149         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1150           NULL, get_id_isar3_el1 },
1151         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1152           NULL, get_id_isar4_el1 },
1153         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1154           NULL, get_id_isar5_el1 },
1155         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1156           NULL, get_clidr_el1 },
1157         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1158           NULL, get_aidr_el1 },
1159         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1160           NULL, get_ctr_el0 },
1161 };
1162
1163 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1164 {
1165         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1166                 return -EFAULT;
1167         return 0;
1168 }
1169
1170 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1171 {
1172         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1173                 return -EFAULT;
1174         return 0;
1175 }
1176
1177 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1178 {
1179         struct sys_reg_params params;
1180         const struct sys_reg_desc *r;
1181
1182         if (!index_to_params(id, &params))
1183                 return -ENOENT;
1184
1185         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1186         if (!r)
1187                 return -ENOENT;
1188
1189         return reg_to_user(uaddr, &r->val, id);
1190 }
1191
1192 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1193 {
1194         struct sys_reg_params params;
1195         const struct sys_reg_desc *r;
1196         int err;
1197         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1198
1199         if (!index_to_params(id, &params))
1200                 return -ENOENT;
1201         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1202         if (!r)
1203                 return -ENOENT;
1204
1205         err = reg_from_user(&val, uaddr, id);
1206         if (err)
1207                 return err;
1208
1209         /* This is what we mean by invariant: you can't change it. */
1210         if (r->val != val)
1211                 return -EINVAL;
1212
1213         return 0;
1214 }
1215
1216 static bool is_valid_cache(u32 val)
1217 {
1218         u32 level, ctype;
1219
1220         if (val >= CSSELR_MAX)
1221                 return -ENOENT;
1222
1223         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1224         level = (val >> 1);
1225         ctype = (cache_levels >> (level * 3)) & 7;
1226
1227         switch (ctype) {
1228         case 0: /* No cache */
1229                 return false;
1230         case 1: /* Instruction cache only */
1231                 return (val & 1);
1232         case 2: /* Data cache only */
1233         case 4: /* Unified cache */
1234                 return !(val & 1);
1235         case 3: /* Separate instruction and data caches */
1236                 return true;
1237         default: /* Reserved: we can't know instruction or data. */
1238                 return false;
1239         }
1240 }
1241
1242 static int demux_c15_get(u64 id, void __user *uaddr)
1243 {
1244         u32 val;
1245         u32 __user *uval = uaddr;
1246
1247         /* Fail if we have unknown bits set. */
1248         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1249                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1250                 return -ENOENT;
1251
1252         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1253         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1254                 if (KVM_REG_SIZE(id) != 4)
1255                         return -ENOENT;
1256                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1257                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1258                 if (!is_valid_cache(val))
1259                         return -ENOENT;
1260
1261                 return put_user(get_ccsidr(val), uval);
1262         default:
1263                 return -ENOENT;
1264         }
1265 }
1266
1267 static int demux_c15_set(u64 id, void __user *uaddr)
1268 {
1269         u32 val, newval;
1270         u32 __user *uval = uaddr;
1271
1272         /* Fail if we have unknown bits set. */
1273         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1274                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1275                 return -ENOENT;
1276
1277         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1278         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1279                 if (KVM_REG_SIZE(id) != 4)
1280                         return -ENOENT;
1281                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1282                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1283                 if (!is_valid_cache(val))
1284                         return -ENOENT;
1285
1286                 if (get_user(newval, uval))
1287                         return -EFAULT;
1288
1289                 /* This is also invariant: you can't change it. */
1290                 if (newval != get_ccsidr(val))
1291                         return -EINVAL;
1292                 return 0;
1293         default:
1294                 return -ENOENT;
1295         }
1296 }
1297
1298 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1299 {
1300         const struct sys_reg_desc *r;
1301         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1302
1303         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1304                 return demux_c15_get(reg->id, uaddr);
1305
1306         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1307                 return -ENOENT;
1308
1309         r = index_to_sys_reg_desc(vcpu, reg->id);
1310         if (!r)
1311                 return get_invariant_sys_reg(reg->id, uaddr);
1312
1313         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
1314 }
1315
1316 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1317 {
1318         const struct sys_reg_desc *r;
1319         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
1320
1321         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1322                 return demux_c15_set(reg->id, uaddr);
1323
1324         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
1325                 return -ENOENT;
1326
1327         r = index_to_sys_reg_desc(vcpu, reg->id);
1328         if (!r)
1329                 return set_invariant_sys_reg(reg->id, uaddr);
1330
1331         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
1332 }
1333
1334 static unsigned int num_demux_regs(void)
1335 {
1336         unsigned int i, count = 0;
1337
1338         for (i = 0; i < CSSELR_MAX; i++)
1339                 if (is_valid_cache(i))
1340                         count++;
1341
1342         return count;
1343 }
1344
1345 static int write_demux_regids(u64 __user *uindices)
1346 {
1347         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1348         unsigned int i;
1349
1350         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1351         for (i = 0; i < CSSELR_MAX; i++) {
1352                 if (!is_valid_cache(i))
1353                         continue;
1354                 if (put_user(val | i, uindices))
1355                         return -EFAULT;
1356                 uindices++;
1357         }
1358         return 0;
1359 }
1360
1361 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
1362 {
1363         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
1364                 KVM_REG_ARM64_SYSREG |
1365                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
1366                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
1367                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
1368                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
1369                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
1370 }
1371
1372 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
1373 {
1374         if (!*uind)
1375                 return true;
1376
1377         if (put_user(sys_reg_to_index(reg), *uind))
1378                 return false;
1379
1380         (*uind)++;
1381         return true;
1382 }
1383
1384 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
1385 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
1386 {
1387         const struct sys_reg_desc *i1, *i2, *end1, *end2;
1388         unsigned int total = 0;
1389         size_t num;
1390
1391         /* We check for duplicates here, to allow arch-specific overrides. */
1392         i1 = get_target_table(vcpu->arch.target, true, &num);
1393         end1 = i1 + num;
1394         i2 = sys_reg_descs;
1395         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
1396
1397         BUG_ON(i1 == end1 || i2 == end2);
1398
1399         /* Walk carefully, as both tables may refer to the same register. */
1400         while (i1 || i2) {
1401                 int cmp = cmp_sys_reg(i1, i2);
1402                 /* target-specific overrides generic entry. */
1403                 if (cmp <= 0) {
1404                         /* Ignore registers we trap but don't save. */
1405                         if (i1->reg) {
1406                                 if (!copy_reg_to_user(i1, &uind))
1407                                         return -EFAULT;
1408                                 total++;
1409                         }
1410                 } else {
1411                         /* Ignore registers we trap but don't save. */
1412                         if (i2->reg) {
1413                                 if (!copy_reg_to_user(i2, &uind))
1414                                         return -EFAULT;
1415                                 total++;
1416                         }
1417                 }
1418
1419                 if (cmp <= 0 && ++i1 == end1)
1420                         i1 = NULL;
1421                 if (cmp >= 0 && ++i2 == end2)
1422                         i2 = NULL;
1423         }
1424         return total;
1425 }
1426
1427 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
1428 {
1429         return ARRAY_SIZE(invariant_sys_regs)
1430                 + num_demux_regs()
1431                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
1432 }
1433
1434 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1435 {
1436         unsigned int i;
1437         int err;
1438
1439         /* Then give them all the invariant registers' indices. */
1440         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
1441                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
1442                         return -EFAULT;
1443                 uindices++;
1444         }
1445
1446         err = walk_sys_regs(vcpu, uindices);
1447         if (err < 0)
1448                 return err;
1449         uindices += err;
1450
1451         return write_demux_regids(uindices);
1452 }
1453
1454 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
1455 {
1456         unsigned int i;
1457
1458         for (i = 1; i < n; i++) {
1459                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
1460                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
1461                         return 1;
1462                 }
1463         }
1464
1465         return 0;
1466 }
1467
1468 void kvm_sys_reg_table_init(void)
1469 {
1470         unsigned int i;
1471         struct sys_reg_desc clidr;
1472
1473         /* Make sure tables are unique and in order. */
1474         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
1475         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
1476         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
1477         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1478         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
1479         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
1480
1481         /* We abuse the reset function to overwrite the table itself. */
1482         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
1483                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
1484
1485         /*
1486          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1487          *
1488          *   If software reads the Cache Type fields from Ctype1
1489          *   upwards, once it has seen a value of 0b000, no caches
1490          *   exist at further-out levels of the hierarchy. So, for
1491          *   example, if Ctype3 is the first Cache Type field with a
1492          *   value of 0b000, the values of Ctype4 to Ctype7 must be
1493          *   ignored.
1494          */
1495         get_clidr_el1(NULL, &clidr); /* Ugly... */
1496         cache_levels = clidr.val;
1497         for (i = 0; i < 7; i++)
1498                 if (((cache_levels >> (i*3)) & 7) == 0)
1499                         break;
1500         /* Clear all higher bits. */
1501         cache_levels &= (1 << (i*3))-1;
1502 }
1503
1504 /**
1505  * kvm_reset_sys_regs - sets system registers to reset value
1506  * @vcpu: The VCPU pointer
1507  *
1508  * This function finds the right table above and sets the registers on the
1509  * virtual CPU struct to their architecturally defined reset values.
1510  */
1511 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
1512 {
1513         size_t num;
1514         const struct sys_reg_desc *table;
1515
1516         /* Catch someone adding a register without putting in reset entry. */
1517         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
1518
1519         /* Generic chip reset first (so target could override). */
1520         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1521
1522         table = get_target_table(vcpu->arch.target, true, &num);
1523         reset_sys_reg_descs(vcpu, table, num);
1524
1525         for (num = 1; num < NR_SYS_REGS; num++)
1526                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
1527                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
1528 }