arm64: dts: rk3399-box: vdd_gpu force PWM mode via regulator mode
[firefly-linux-kernel-4.4.55.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/processor.h>
28 #include <asm/sysreg.h>
29
30 unsigned long elf_hwcap __read_mostly;
31 EXPORT_SYMBOL_GPL(elf_hwcap);
32
33 #ifdef CONFIG_COMPAT
34 #define COMPAT_ELF_HWCAP_DEFAULT        \
35                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
36                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
37                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
38                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
39                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
40                                  COMPAT_HWCAP_LPAE)
41 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
42 unsigned int compat_elf_hwcap2 __read_mostly;
43 #endif
44
45 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
46
47 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
48         {                                               \
49                 .sign = SIGNED,                         \
50                 .strict = STRICT,                       \
51                 .type = TYPE,                           \
52                 .shift = SHIFT,                         \
53                 .width = WIDTH,                         \
54                 .safe_val = SAFE_VAL,                   \
55         }
56
57 /* Define a feature with signed values */
58 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
59         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
60
61 /* Define a feature with unsigned value */
62 #define U_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
63         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
64
65 #define ARM64_FTR_END                                   \
66         {                                               \
67                 .width = 0,                             \
68         }
69
70 /* meta feature for alternatives */
71 static bool __maybe_unused
72 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry);
73
74 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
75         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
76         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
77         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
78         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
80         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
81         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
82         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
83         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
84         ARM64_FTR_END,
85 };
86
87 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
88         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
89         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
90         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
91         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
92         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
93         /* Linux doesn't care about the EL3 */
94         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
95         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
96         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
97         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
98         ARM64_FTR_END,
99 };
100
101 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
102         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
103         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
104         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
105         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
106         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
107         /* Linux shouldn't care about secure memory */
108         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
109         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
110         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
111         /*
112          * Differing PARange is fine as long as all peripherals and memory are mapped
113          * within the minimum PARange of all CPUs
114          */
115         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
116         ARM64_FTR_END,
117 };
118
119 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
120         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
121         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
122         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
123         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
124         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
125         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
126         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
127         ARM64_FTR_END,
128 };
129
130 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
131         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
132         ARM64_FTR_END,
133 };
134
135 static struct arm64_ftr_bits ftr_ctr[] = {
136         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),      /* RAO */
137         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
138         U_ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),        /* CWG */
139         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0), /* ERG */
140         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1), /* DminLine */
141         /*
142          * Linux can handle differing I-cache policies. Userspace JITs will
143          * make use of *minLine
144          */
145         U_ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),   /* L1Ip */
146         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
147         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),  /* IminLine */
148         ARM64_FTR_END,
149 };
150
151 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
152         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),        /* InnerShr */
153         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
154         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
155         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
156         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
157         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0), /* OuterShr */
158         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
159         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
160         ARM64_FTR_END,
161 };
162
163 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
164         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
165         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
166         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
167         U_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
168         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
169         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
170         U_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
171         ARM64_FTR_END,
172 };
173
174 static struct arm64_ftr_bits ftr_mvfr2[] = {
175         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
176         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
177         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
178         ARM64_FTR_END,
179 };
180
181 static struct arm64_ftr_bits ftr_dczid[] = {
182         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
183         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
184         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
185         ARM64_FTR_END,
186 };
187
188
189 static struct arm64_ftr_bits ftr_id_isar5[] = {
190         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
192         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
193         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
194         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
197         ARM64_FTR_END,
198 };
199
200 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
201         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
202         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
203         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
204         ARM64_FTR_END,
205 };
206
207 static struct arm64_ftr_bits ftr_id_pfr0[] = {
208         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
209         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
210         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
211         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
212         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
213         ARM64_FTR_END,
214 };
215
216 /*
217  * Common ftr bits for a 32bit register with all hidden, strict
218  * attributes, with 4bit feature fields and a default safe value of
219  * 0. Covers the following 32bit registers:
220  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
221  */
222 static struct arm64_ftr_bits ftr_generic_32bits[] = {
223         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
224         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
225         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
226         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
227         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
228         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
229         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
230         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
231         ARM64_FTR_END,
232 };
233
234 static struct arm64_ftr_bits ftr_generic[] = {
235         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
236         ARM64_FTR_END,
237 };
238
239 static struct arm64_ftr_bits ftr_generic32[] = {
240         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
241         ARM64_FTR_END,
242 };
243
244 static struct arm64_ftr_bits ftr_aa64raz[] = {
245         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
246         ARM64_FTR_END,
247 };
248
249 #define ARM64_FTR_REG(id, table)                \
250         {                                       \
251                 .sys_id = id,                   \
252                 .name = #id,                    \
253                 .ftr_bits = &((table)[0]),      \
254         }
255
256 static struct arm64_ftr_reg arm64_ftr_regs[] = {
257
258         /* Op1 = 0, CRn = 0, CRm = 1 */
259         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
260         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
261         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_generic_32bits),
262         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
263         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
264         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
265         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
266
267         /* Op1 = 0, CRn = 0, CRm = 2 */
268         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
269         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
270         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
271         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
272         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
273         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
274         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
275
276         /* Op1 = 0, CRn = 0, CRm = 3 */
277         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
278         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
279         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
280
281         /* Op1 = 0, CRn = 0, CRm = 4 */
282         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
283         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
284
285         /* Op1 = 0, CRn = 0, CRm = 5 */
286         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
287         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
288
289         /* Op1 = 0, CRn = 0, CRm = 6 */
290         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
291         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
292
293         /* Op1 = 0, CRn = 0, CRm = 7 */
294         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
295         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
296         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
297
298         /* Op1 = 3, CRn = 0, CRm = 0 */
299         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
300         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
301
302         /* Op1 = 3, CRn = 14, CRm = 0 */
303         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
304 };
305
306 static int search_cmp_ftr_reg(const void *id, const void *regp)
307 {
308         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
309 }
310
311 /*
312  * get_arm64_ftr_reg - Lookup a feature register entry using its
313  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
314  * ascending order of sys_id , we use binary search to find a matching
315  * entry.
316  *
317  * returns - Upon success,  matching ftr_reg entry for id.
318  *         - NULL on failure. It is upto the caller to decide
319  *           the impact of a failure.
320  */
321 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
322 {
323         return bsearch((const void *)(unsigned long)sys_id,
324                         arm64_ftr_regs,
325                         ARRAY_SIZE(arm64_ftr_regs),
326                         sizeof(arm64_ftr_regs[0]),
327                         search_cmp_ftr_reg);
328 }
329
330 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
331 {
332         u64 mask = arm64_ftr_mask(ftrp);
333
334         reg &= ~mask;
335         reg |= (ftr_val << ftrp->shift) & mask;
336         return reg;
337 }
338
339 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
340 {
341         s64 ret = 0;
342
343         switch (ftrp->type) {
344         case FTR_EXACT:
345                 ret = ftrp->safe_val;
346                 break;
347         case FTR_LOWER_SAFE:
348                 ret = new < cur ? new : cur;
349                 break;
350         case FTR_HIGHER_SAFE:
351                 ret = new > cur ? new : cur;
352                 break;
353         default:
354                 BUG();
355         }
356
357         return ret;
358 }
359
360 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
361 {
362         return ((const struct arm64_ftr_reg *)a)->sys_id -
363                  ((const struct arm64_ftr_reg *)b)->sys_id;
364 }
365
366 static void __init swap_ftr_regs(void *a, void *b, int size)
367 {
368         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
369         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
370         *(struct arm64_ftr_reg *)b = tmp;
371 }
372
373 static void __init sort_ftr_regs(void)
374 {
375         /* Keep the array sorted so that we can do the binary search */
376         sort(arm64_ftr_regs,
377                 ARRAY_SIZE(arm64_ftr_regs),
378                 sizeof(arm64_ftr_regs[0]),
379                 sort_cmp_ftr_regs,
380                 swap_ftr_regs);
381 }
382
383 /*
384  * Initialise the CPU feature register from Boot CPU values.
385  * Also initiliases the strict_mask for the register.
386  */
387 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
388 {
389         u64 val = 0;
390         u64 strict_mask = ~0x0ULL;
391         struct arm64_ftr_bits *ftrp;
392         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
393
394         BUG_ON(!reg);
395
396         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
397                 s64 ftr_new = arm64_ftr_value(ftrp, new);
398
399                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
400                 if (!ftrp->strict)
401                         strict_mask &= ~arm64_ftr_mask(ftrp);
402         }
403         reg->sys_val = val;
404         reg->strict_mask = strict_mask;
405 }
406
407 void __init init_cpu_features(struct cpuinfo_arm64 *info)
408 {
409         /* Before we start using the tables, make sure it is sorted */
410         sort_ftr_regs();
411
412         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
413         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
414         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
415         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
416         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
417         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
418         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
419         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
420         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
421         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
422         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
423         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
424         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
425         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
426         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
427         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
428         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
429         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
430         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
431         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
432         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
433         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
434         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
435         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
436         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
437         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
438         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
439         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
440 }
441
442 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
443 {
444         struct arm64_ftr_bits *ftrp;
445
446         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
447                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
448                 s64 ftr_new = arm64_ftr_value(ftrp, new);
449
450                 if (ftr_cur == ftr_new)
451                         continue;
452                 /* Find a safe value */
453                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
454                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
455         }
456
457 }
458
459 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
460 {
461         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
462
463         BUG_ON(!regp);
464         update_cpu_ftr_reg(regp, val);
465         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
466                 return 0;
467         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
468                         regp->name, boot, cpu, val);
469         return 1;
470 }
471
472 /*
473  * Update system wide CPU feature registers with the values from a
474  * non-boot CPU. Also performs SANITY checks to make sure that there
475  * aren't any insane variations from that of the boot CPU.
476  */
477 void update_cpu_features(int cpu,
478                          struct cpuinfo_arm64 *info,
479                          struct cpuinfo_arm64 *boot)
480 {
481         int taint = 0;
482
483         /*
484          * The kernel can handle differing I-cache policies, but otherwise
485          * caches should look identical. Userspace JITs will make use of
486          * *minLine.
487          */
488         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
489                                       info->reg_ctr, boot->reg_ctr);
490
491         /*
492          * Userspace may perform DC ZVA instructions. Mismatched block sizes
493          * could result in too much or too little memory being zeroed if a
494          * process is preempted and migrated between CPUs.
495          */
496         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
497                                       info->reg_dczid, boot->reg_dczid);
498
499         /* If different, timekeeping will be broken (especially with KVM) */
500         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
501                                       info->reg_cntfrq, boot->reg_cntfrq);
502
503         /*
504          * The kernel uses self-hosted debug features and expects CPUs to
505          * support identical debug features. We presently need CTX_CMPs, WRPs,
506          * and BRPs to be identical.
507          * ID_AA64DFR1 is currently RES0.
508          */
509         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
510                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
511         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
512                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
513         /*
514          * Even in big.LITTLE, processors should be identical instruction-set
515          * wise.
516          */
517         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
518                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
519         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
520                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
521
522         /*
523          * Differing PARange support is fine as long as all peripherals and
524          * memory are mapped within the minimum PARange of all CPUs.
525          * Linux should not care about secure memory.
526          */
527         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
528                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
529         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
530                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
531         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
532                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
533
534         /*
535          * EL3 is not our concern.
536          * ID_AA64PFR1 is currently RES0.
537          */
538         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
539                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
540         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
541                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
542
543         /*
544          * If we have AArch32, we care about 32-bit features for compat. These
545          * registers should be RES0 otherwise.
546          */
547         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
548                                         info->reg_id_dfr0, boot->reg_id_dfr0);
549         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
550                                         info->reg_id_isar0, boot->reg_id_isar0);
551         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
552                                         info->reg_id_isar1, boot->reg_id_isar1);
553         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
554                                         info->reg_id_isar2, boot->reg_id_isar2);
555         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
556                                         info->reg_id_isar3, boot->reg_id_isar3);
557         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
558                                         info->reg_id_isar4, boot->reg_id_isar4);
559         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
560                                         info->reg_id_isar5, boot->reg_id_isar5);
561
562         /*
563          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
564          * ACTLR formats could differ across CPUs and therefore would have to
565          * be trapped for virtualization anyway.
566          */
567         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
568                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
569         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
570                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
571         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
572                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
573         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
574                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
575         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
576                                         info->reg_id_pfr0, boot->reg_id_pfr0);
577         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
578                                         info->reg_id_pfr1, boot->reg_id_pfr1);
579         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
580                                         info->reg_mvfr0, boot->reg_mvfr0);
581         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
582                                         info->reg_mvfr1, boot->reg_mvfr1);
583         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
584                                         info->reg_mvfr2, boot->reg_mvfr2);
585
586         /*
587          * Mismatched CPU features are a recipe for disaster. Don't even
588          * pretend to support them.
589          */
590         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
591                         "Unsupported CPU feature variation.\n");
592 }
593
594 u64 read_system_reg(u32 id)
595 {
596         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
597
598         /* We shouldn't get a request for an unsupported register */
599         BUG_ON(!regp);
600         return regp->sys_val;
601 }
602
603 #include <linux/irqchip/arm-gic-v3.h>
604
605 static bool
606 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
607 {
608         int val = cpuid_feature_extract_field(reg, entry->field_pos);
609
610         return val >= entry->min_field_value;
611 }
612
613 static bool
614 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
615 {
616         u64 val;
617
618         val = read_system_reg(entry->sys_reg);
619         return feature_matches(val, entry);
620 }
621
622 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
623 {
624         bool has_sre;
625
626         if (!has_cpuid_feature(entry))
627                 return false;
628
629         has_sre = gic_enable_sre();
630         if (!has_sre)
631                 pr_warn_once("%s present but disabled by higher exception level\n",
632                              entry->desc);
633
634         return has_sre;
635 }
636
637 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry)
638 {
639         u32 midr = read_cpuid_id();
640         u32 rv_min, rv_max;
641
642         /* Cavium ThunderX pass 1.x and 2.x */
643         rv_min = 0;
644         rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
645
646         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
647 }
648
649 static const struct arm64_cpu_capabilities arm64_features[] = {
650         {
651                 .desc = "GIC system register CPU interface",
652                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
653                 .matches = has_useable_gicv3_cpuif,
654                 .sys_reg = SYS_ID_AA64PFR0_EL1,
655                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
656                 .min_field_value = 1,
657         },
658 #ifdef CONFIG_ARM64_PAN
659         {
660                 .desc = "Privileged Access Never",
661                 .capability = ARM64_HAS_PAN,
662                 .matches = has_cpuid_feature,
663                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
664                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
665                 .min_field_value = 1,
666                 .enable = cpu_enable_pan,
667         },
668 #endif /* CONFIG_ARM64_PAN */
669 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
670         {
671                 .desc = "LSE atomic instructions",
672                 .capability = ARM64_HAS_LSE_ATOMICS,
673                 .matches = has_cpuid_feature,
674                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
675                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
676                 .min_field_value = 2,
677         },
678 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
679         {
680                 .desc = "Software prefetching using PRFM",
681                 .capability = ARM64_HAS_NO_HW_PREFETCH,
682                 .matches = has_no_hw_prefetch,
683         },
684 #ifdef CONFIG_ARM64_UAO
685         {
686                 .desc = "User Access Override",
687                 .capability = ARM64_HAS_UAO,
688                 .matches = has_cpuid_feature,
689                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
690                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
691                 .min_field_value = 1,
692                 .enable = cpu_enable_uao,
693         },
694 #endif /* CONFIG_ARM64_UAO */
695 #ifdef CONFIG_ARM64_PAN
696         {
697                 .capability = ARM64_ALT_PAN_NOT_UAO,
698                 .matches = cpufeature_pan_not_uao,
699         },
700 #endif /* CONFIG_ARM64_PAN */
701         {},
702 };
703
704 #define HWCAP_CAP(reg, field, min_value, type, cap)             \
705         {                                                       \
706                 .desc = #cap,                                   \
707                 .matches = has_cpuid_feature,                   \
708                 .sys_reg = reg,                                 \
709                 .field_pos = field,                             \
710                 .min_field_value = min_value,                   \
711                 .hwcap_type = type,                             \
712                 .hwcap = cap,                                   \
713         }
714
715 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
716         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 2, CAP_HWCAP, HWCAP_PMULL),
717         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, 1, CAP_HWCAP, HWCAP_AES),
718         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, 1, CAP_HWCAP, HWCAP_SHA1),
719         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, 1, CAP_HWCAP, HWCAP_SHA2),
720         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, 1, CAP_HWCAP, HWCAP_CRC32),
721         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, 2, CAP_HWCAP, HWCAP_ATOMICS),
722         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, 0, CAP_HWCAP, HWCAP_FP),
723         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, 0, CAP_HWCAP, HWCAP_ASIMD),
724 #ifdef CONFIG_COMPAT
725         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
726         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
727         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
728         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
729         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
730 #endif
731         {},
732 };
733
734 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
735 {
736         switch (cap->hwcap_type) {
737         case CAP_HWCAP:
738                 elf_hwcap |= cap->hwcap;
739                 break;
740 #ifdef CONFIG_COMPAT
741         case CAP_COMPAT_HWCAP:
742                 compat_elf_hwcap |= (u32)cap->hwcap;
743                 break;
744         case CAP_COMPAT_HWCAP2:
745                 compat_elf_hwcap2 |= (u32)cap->hwcap;
746                 break;
747 #endif
748         default:
749                 WARN_ON(1);
750                 break;
751         }
752 }
753
754 /* Check if we have a particular HWCAP enabled */
755 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
756 {
757         bool rc;
758
759         switch (cap->hwcap_type) {
760         case CAP_HWCAP:
761                 rc = (elf_hwcap & cap->hwcap) != 0;
762                 break;
763 #ifdef CONFIG_COMPAT
764         case CAP_COMPAT_HWCAP:
765                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
766                 break;
767         case CAP_COMPAT_HWCAP2:
768                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
769                 break;
770 #endif
771         default:
772                 WARN_ON(1);
773                 rc = false;
774         }
775
776         return rc;
777 }
778
779 static void __init setup_cpu_hwcaps(void)
780 {
781         int i;
782         const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
783
784         for (i = 0; hwcaps[i].matches; i++)
785                 if (hwcaps[i].matches(&hwcaps[i]))
786                         cap_set_hwcap(&hwcaps[i]);
787 }
788
789 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
790                             const char *info)
791 {
792         int i;
793
794         for (i = 0; caps[i].matches; i++) {
795                 if (!caps[i].matches(&caps[i]))
796                         continue;
797
798                 if (!cpus_have_cap(caps[i].capability) && caps[i].desc)
799                         pr_info("%s %s\n", info, caps[i].desc);
800                 cpus_set_cap(caps[i].capability);
801         }
802 }
803
804 /*
805  * Run through the enabled capabilities and enable() it on all active
806  * CPUs
807  */
808 static void __init
809 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
810 {
811         int i;
812
813         for (i = 0; caps[i].matches; i++)
814                 if (caps[i].enable && cpus_have_cap(caps[i].capability))
815                         on_each_cpu(caps[i].enable, NULL, true);
816 }
817
818 #ifdef CONFIG_HOTPLUG_CPU
819
820 /*
821  * Flag to indicate if we have computed the system wide
822  * capabilities based on the boot time active CPUs. This
823  * will be used to determine if a new booting CPU should
824  * go through the verification process to make sure that it
825  * supports the system capabilities, without using a hotplug
826  * notifier.
827  */
828 static bool sys_caps_initialised;
829
830 static inline void set_sys_caps_initialised(void)
831 {
832         sys_caps_initialised = true;
833 }
834
835 /*
836  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
837  */
838 static u64 __raw_read_system_reg(u32 sys_id)
839 {
840         switch (sys_id) {
841         case SYS_ID_PFR0_EL1:           return read_cpuid(SYS_ID_PFR0_EL1);
842         case SYS_ID_PFR1_EL1:           return read_cpuid(SYS_ID_PFR1_EL1);
843         case SYS_ID_DFR0_EL1:           return read_cpuid(SYS_ID_DFR0_EL1);
844         case SYS_ID_MMFR0_EL1:          return read_cpuid(SYS_ID_MMFR0_EL1);
845         case SYS_ID_MMFR1_EL1:          return read_cpuid(SYS_ID_MMFR1_EL1);
846         case SYS_ID_MMFR2_EL1:          return read_cpuid(SYS_ID_MMFR2_EL1);
847         case SYS_ID_MMFR3_EL1:          return read_cpuid(SYS_ID_MMFR3_EL1);
848         case SYS_ID_ISAR0_EL1:          return read_cpuid(SYS_ID_ISAR0_EL1);
849         case SYS_ID_ISAR1_EL1:          return read_cpuid(SYS_ID_ISAR1_EL1);
850         case SYS_ID_ISAR2_EL1:          return read_cpuid(SYS_ID_ISAR2_EL1);
851         case SYS_ID_ISAR3_EL1:          return read_cpuid(SYS_ID_ISAR3_EL1);
852         case SYS_ID_ISAR4_EL1:          return read_cpuid(SYS_ID_ISAR4_EL1);
853         case SYS_ID_ISAR5_EL1:          return read_cpuid(SYS_ID_ISAR4_EL1);
854         case SYS_MVFR0_EL1:             return read_cpuid(SYS_MVFR0_EL1);
855         case SYS_MVFR1_EL1:             return read_cpuid(SYS_MVFR1_EL1);
856         case SYS_MVFR2_EL1:             return read_cpuid(SYS_MVFR2_EL1);
857
858         case SYS_ID_AA64PFR0_EL1:       return read_cpuid(SYS_ID_AA64PFR0_EL1);
859         case SYS_ID_AA64PFR1_EL1:       return read_cpuid(SYS_ID_AA64PFR0_EL1);
860         case SYS_ID_AA64DFR0_EL1:       return read_cpuid(SYS_ID_AA64DFR0_EL1);
861         case SYS_ID_AA64DFR1_EL1:       return read_cpuid(SYS_ID_AA64DFR0_EL1);
862         case SYS_ID_AA64MMFR0_EL1:      return read_cpuid(SYS_ID_AA64MMFR0_EL1);
863         case SYS_ID_AA64MMFR1_EL1:      return read_cpuid(SYS_ID_AA64MMFR1_EL1);
864         case SYS_ID_AA64MMFR2_EL1:      return read_cpuid(SYS_ID_AA64MMFR2_EL1);
865         case SYS_ID_AA64ISAR0_EL1:      return read_cpuid(SYS_ID_AA64ISAR0_EL1);
866         case SYS_ID_AA64ISAR1_EL1:      return read_cpuid(SYS_ID_AA64ISAR1_EL1);
867
868         case SYS_CNTFRQ_EL0:            return read_cpuid(SYS_CNTFRQ_EL0);
869         case SYS_CTR_EL0:               return read_cpuid(SYS_CTR_EL0);
870         case SYS_DCZID_EL0:             return read_cpuid(SYS_DCZID_EL0);
871         default:
872                 BUG();
873                 return 0;
874         }
875 }
876
877 /*
878  * Park the CPU which doesn't have the capability as advertised
879  * by the system.
880  */
881 static void fail_incapable_cpu(char *cap_type,
882                                  const struct arm64_cpu_capabilities *cap)
883 {
884         int cpu = smp_processor_id();
885
886         pr_crit("CPU%d: missing %s : %s\n", cpu, cap_type, cap->desc);
887         /* Mark this CPU absent */
888         set_cpu_present(cpu, 0);
889
890         /* Check if we can park ourselves */
891         if (cpu_ops[cpu] && cpu_ops[cpu]->cpu_die)
892                 cpu_ops[cpu]->cpu_die(cpu);
893         asm(
894         "1:     wfe\n"
895         "       wfi\n"
896         "       b       1b");
897 }
898
899 /*
900  * Run through the enabled system capabilities and enable() it on this CPU.
901  * The capabilities were decided based on the available CPUs at the boot time.
902  * Any new CPU should match the system wide status of the capability. If the
903  * new CPU doesn't have a capability which the system now has enabled, we
904  * cannot do anything to fix it up and could cause unexpected failures. So
905  * we park the CPU.
906  */
907 void verify_local_cpu_capabilities(void)
908 {
909         int i;
910         const struct arm64_cpu_capabilities *caps;
911
912         /*
913          * If we haven't computed the system capabilities, there is nothing
914          * to verify.
915          */
916         if (!sys_caps_initialised)
917                 return;
918
919         caps = arm64_features;
920         for (i = 0; caps[i].matches; i++) {
921                 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
922                         continue;
923                 /*
924                  * If the new CPU misses an advertised feature, we cannot proceed
925                  * further, park the cpu.
926                  */
927                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
928                         fail_incapable_cpu("arm64_features", &caps[i]);
929                 if (caps[i].enable)
930                         caps[i].enable(NULL);
931         }
932
933         for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) {
934                 if (!cpus_have_hwcap(&caps[i]))
935                         continue;
936                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i]))
937                         fail_incapable_cpu("arm64_hwcaps", &caps[i]);
938         }
939 }
940
941 #else   /* !CONFIG_HOTPLUG_CPU */
942
943 static inline void set_sys_caps_initialised(void)
944 {
945 }
946
947 #endif  /* CONFIG_HOTPLUG_CPU */
948
949 static void __init setup_feature_capabilities(void)
950 {
951         update_cpu_capabilities(arm64_features, "detected feature:");
952         enable_cpu_capabilities(arm64_features);
953 }
954
955 void __init setup_cpu_features(void)
956 {
957         u32 cwg;
958         int cls;
959
960         /* Set the CPU feature capabilies */
961         setup_feature_capabilities();
962         setup_cpu_hwcaps();
963
964         /* Advertise that we have computed the system capabilities */
965         set_sys_caps_initialised();
966
967         /*
968          * Check for sane CTR_EL0.CWG value.
969          */
970         cwg = cache_type_cwg();
971         cls = cache_line_size();
972         if (!cwg)
973                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
974                         cls);
975         if (L1_CACHE_BYTES < cls)
976                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
977                         L1_CACHE_BYTES, cls);
978 }
979
980 static bool __maybe_unused
981 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry)
982 {
983         return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
984 }