Merge remote-tracking branch 'lsk/v3.10/topic/of' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35
36 #include "mm.h"
37 #include "tcm.h"
38
39 /*
40  * empty_zero_page is a special page that is used for
41  * zero-initialized data and COW.
42  */
43 struct page *empty_zero_page;
44 EXPORT_SYMBOL(empty_zero_page);
45
46 /*
47  * The pmd table for the upper-most set of pages.
48  */
49 pmd_t *top_pmd;
50
51 #define CPOLICY_UNCACHED        0
52 #define CPOLICY_BUFFERED        1
53 #define CPOLICY_WRITETHROUGH    2
54 #define CPOLICY_WRITEBACK       3
55 #define CPOLICY_WRITEALLOC      4
56
57 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
58 static unsigned int ecc_mask __initdata = 0;
59 pgprot_t pgprot_user;
60 pgprot_t pgprot_kernel;
61 pgprot_t pgprot_hyp_device;
62 pgprot_t pgprot_s2;
63 pgprot_t pgprot_s2_device;
64
65 EXPORT_SYMBOL(pgprot_user);
66 EXPORT_SYMBOL(pgprot_kernel);
67
68 struct cachepolicy {
69         const char      policy[16];
70         unsigned int    cr_mask;
71         pmdval_t        pmd;
72         pteval_t        pte;
73         pteval_t        pte_s2;
74 };
75
76 #ifdef CONFIG_ARM_LPAE
77 #define s2_policy(policy)       policy
78 #else
79 #define s2_policy(policy)       0
80 #endif
81
82 static struct cachepolicy cache_policies[] __initdata = {
83         {
84                 .policy         = "uncached",
85                 .cr_mask        = CR_W|CR_C,
86                 .pmd            = PMD_SECT_UNCACHED,
87                 .pte            = L_PTE_MT_UNCACHED,
88                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
89         }, {
90                 .policy         = "buffered",
91                 .cr_mask        = CR_C,
92                 .pmd            = PMD_SECT_BUFFERED,
93                 .pte            = L_PTE_MT_BUFFERABLE,
94                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
95         }, {
96                 .policy         = "writethrough",
97                 .cr_mask        = 0,
98                 .pmd            = PMD_SECT_WT,
99                 .pte            = L_PTE_MT_WRITETHROUGH,
100                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
101         }, {
102                 .policy         = "writeback",
103                 .cr_mask        = 0,
104                 .pmd            = PMD_SECT_WB,
105                 .pte            = L_PTE_MT_WRITEBACK,
106                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
107         }, {
108                 .policy         = "writealloc",
109                 .cr_mask        = 0,
110                 .pmd            = PMD_SECT_WBWA,
111                 .pte            = L_PTE_MT_WRITEALLOC,
112                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
113         }
114 };
115
116 #ifdef CONFIG_CPU_CP15
117 /*
118  * These are useful for identifying cache coherency
119  * problems by allowing the cache or the cache and
120  * writebuffer to be turned off.  (Note: the write
121  * buffer should not be on and the cache off).
122  */
123 static int __init early_cachepolicy(char *p)
124 {
125         int i;
126
127         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
128                 int len = strlen(cache_policies[i].policy);
129
130                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
131                         cachepolicy = i;
132                         cr_alignment &= ~cache_policies[i].cr_mask;
133                         cr_no_alignment &= ~cache_policies[i].cr_mask;
134                         break;
135                 }
136         }
137         if (i == ARRAY_SIZE(cache_policies))
138                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
139         /*
140          * This restriction is partly to do with the way we boot; it is
141          * unpredictable to have memory mapped using two different sets of
142          * memory attributes (shared, type, and cache attribs).  We can not
143          * change these attributes once the initial assembly has setup the
144          * page tables.
145          */
146         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
147                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
148                 cachepolicy = CPOLICY_WRITEBACK;
149         }
150         flush_cache_all();
151         set_cr(cr_alignment);
152         return 0;
153 }
154 early_param("cachepolicy", early_cachepolicy);
155
156 static int __init early_nocache(char *__unused)
157 {
158         char *p = "buffered";
159         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
160         early_cachepolicy(p);
161         return 0;
162 }
163 early_param("nocache", early_nocache);
164
165 static int __init early_nowrite(char *__unused)
166 {
167         char *p = "uncached";
168         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
169         early_cachepolicy(p);
170         return 0;
171 }
172 early_param("nowb", early_nowrite);
173
174 #ifndef CONFIG_ARM_LPAE
175 static int __init early_ecc(char *p)
176 {
177         if (memcmp(p, "on", 2) == 0)
178                 ecc_mask = PMD_PROTECTION;
179         else if (memcmp(p, "off", 3) == 0)
180                 ecc_mask = 0;
181         return 0;
182 }
183 early_param("ecc", early_ecc);
184 #endif
185
186 static int __init noalign_setup(char *__unused)
187 {
188         cr_alignment &= ~CR_A;
189         cr_no_alignment &= ~CR_A;
190         set_cr(cr_alignment);
191         return 1;
192 }
193 __setup("noalign", noalign_setup);
194
195 #ifndef CONFIG_SMP
196 void adjust_cr(unsigned long mask, unsigned long set)
197 {
198         unsigned long flags;
199
200         mask &= ~CR_A;
201
202         set &= mask;
203
204         local_irq_save(flags);
205
206         cr_no_alignment = (cr_no_alignment & ~mask) | set;
207         cr_alignment = (cr_alignment & ~mask) | set;
208
209         set_cr((get_cr() & ~mask) | set);
210
211         local_irq_restore(flags);
212 }
213 #endif
214
215 #else /* ifdef CONFIG_CPU_CP15 */
216
217 static int __init early_cachepolicy(char *p)
218 {
219         pr_warning("cachepolicy kernel parameter not supported without cp15\n");
220 }
221 early_param("cachepolicy", early_cachepolicy);
222
223 static int __init noalign_setup(char *__unused)
224 {
225         pr_warning("noalign kernel parameter not supported without cp15\n");
226 }
227 __setup("noalign", noalign_setup);
228
229 #endif /* ifdef CONFIG_CPU_CP15 / else */
230
231 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
232 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
233
234 static struct mem_type mem_types[] = {
235         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
236                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
237                                   L_PTE_SHARED,
238                 .prot_l1        = PMD_TYPE_TABLE,
239                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
240                 .domain         = DOMAIN_IO,
241         },
242         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
243                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
244                 .prot_l1        = PMD_TYPE_TABLE,
245                 .prot_sect      = PROT_SECT_DEVICE,
246                 .domain         = DOMAIN_IO,
247         },
248         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
249                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
250                 .prot_l1        = PMD_TYPE_TABLE,
251                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
252                 .domain         = DOMAIN_IO,
253         },
254         [MT_DEVICE_WC] = {      /* ioremap_wc */
255                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
256                 .prot_l1        = PMD_TYPE_TABLE,
257                 .prot_sect      = PROT_SECT_DEVICE,
258                 .domain         = DOMAIN_IO,
259         },
260         [MT_UNCACHED] = {
261                 .prot_pte       = PROT_PTE_DEVICE,
262                 .prot_l1        = PMD_TYPE_TABLE,
263                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
264                 .domain         = DOMAIN_IO,
265         },
266         [MT_CACHECLEAN] = {
267                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
268                 .domain    = DOMAIN_KERNEL,
269         },
270 #ifndef CONFIG_ARM_LPAE
271         [MT_MINICLEAN] = {
272                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
273                 .domain    = DOMAIN_KERNEL,
274         },
275 #endif
276         [MT_LOW_VECTORS] = {
277                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
278                                 L_PTE_RDONLY,
279                 .prot_l1   = PMD_TYPE_TABLE,
280                 .domain    = DOMAIN_USER,
281         },
282         [MT_HIGH_VECTORS] = {
283                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
284                                 L_PTE_USER | L_PTE_RDONLY,
285                 .prot_l1   = PMD_TYPE_TABLE,
286                 .domain    = DOMAIN_USER,
287         },
288         [MT_MEMORY] = {
289                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
290                 .prot_l1   = PMD_TYPE_TABLE,
291                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
292                 .domain    = DOMAIN_KERNEL,
293         },
294         [MT_ROM] = {
295                 .prot_sect = PMD_TYPE_SECT,
296                 .domain    = DOMAIN_KERNEL,
297         },
298         [MT_MEMORY_NONCACHED] = {
299                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
300                                 L_PTE_MT_BUFFERABLE,
301                 .prot_l1   = PMD_TYPE_TABLE,
302                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
303                 .domain    = DOMAIN_KERNEL,
304         },
305         [MT_MEMORY_DTCM] = {
306                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
307                                 L_PTE_XN,
308                 .prot_l1   = PMD_TYPE_TABLE,
309                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
310                 .domain    = DOMAIN_KERNEL,
311         },
312         [MT_MEMORY_ITCM] = {
313                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
314                 .prot_l1   = PMD_TYPE_TABLE,
315                 .domain    = DOMAIN_KERNEL,
316         },
317         [MT_MEMORY_SO] = {
318                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
319                                 L_PTE_MT_UNCACHED | L_PTE_XN,
320                 .prot_l1   = PMD_TYPE_TABLE,
321                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
322                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
323                 .domain    = DOMAIN_KERNEL,
324         },
325         [MT_MEMORY_DMA_READY] = {
326                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
327                 .prot_l1   = PMD_TYPE_TABLE,
328                 .domain    = DOMAIN_KERNEL,
329         },
330 };
331
332 const struct mem_type *get_mem_type(unsigned int type)
333 {
334         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
335 }
336 EXPORT_SYMBOL(get_mem_type);
337
338 /*
339  * Adjust the PMD section entries according to the CPU in use.
340  */
341 static void __init build_mem_type_table(void)
342 {
343         struct cachepolicy *cp;
344         unsigned int cr = get_cr();
345         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
346         pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
347         int cpu_arch = cpu_architecture();
348         int i;
349
350         if (cpu_arch < CPU_ARCH_ARMv6) {
351 #if defined(CONFIG_CPU_DCACHE_DISABLE)
352                 if (cachepolicy > CPOLICY_BUFFERED)
353                         cachepolicy = CPOLICY_BUFFERED;
354 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
355                 if (cachepolicy > CPOLICY_WRITETHROUGH)
356                         cachepolicy = CPOLICY_WRITETHROUGH;
357 #endif
358         }
359         if (cpu_arch < CPU_ARCH_ARMv5) {
360                 if (cachepolicy >= CPOLICY_WRITEALLOC)
361                         cachepolicy = CPOLICY_WRITEBACK;
362                 ecc_mask = 0;
363         }
364         if (is_smp())
365                 cachepolicy = CPOLICY_WRITEALLOC;
366
367         /*
368          * Strip out features not present on earlier architectures.
369          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
370          * without extended page tables don't have the 'Shared' bit.
371          */
372         if (cpu_arch < CPU_ARCH_ARMv5)
373                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
374                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
375         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
376                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
377                         mem_types[i].prot_sect &= ~PMD_SECT_S;
378
379         /*
380          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
381          * "update-able on write" bit on ARM610).  However, Xscale and
382          * Xscale3 require this bit to be cleared.
383          */
384         if (cpu_is_xscale() || cpu_is_xsc3()) {
385                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
386                         mem_types[i].prot_sect &= ~PMD_BIT4;
387                         mem_types[i].prot_l1 &= ~PMD_BIT4;
388                 }
389         } else if (cpu_arch < CPU_ARCH_ARMv6) {
390                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
391                         if (mem_types[i].prot_l1)
392                                 mem_types[i].prot_l1 |= PMD_BIT4;
393                         if (mem_types[i].prot_sect)
394                                 mem_types[i].prot_sect |= PMD_BIT4;
395                 }
396         }
397
398         /*
399          * Mark the device areas according to the CPU/architecture.
400          */
401         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
402                 if (!cpu_is_xsc3()) {
403                         /*
404                          * Mark device regions on ARMv6+ as execute-never
405                          * to prevent speculative instruction fetches.
406                          */
407                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
408                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
409                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
410                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
411                 }
412                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
413                         /*
414                          * For ARMv7 with TEX remapping,
415                          * - shared device is SXCB=1100
416                          * - nonshared device is SXCB=0100
417                          * - write combine device mem is SXCB=0001
418                          * (Uncached Normal memory)
419                          */
420                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
421                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
422                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
423                 } else if (cpu_is_xsc3()) {
424                         /*
425                          * For Xscale3,
426                          * - shared device is TEXCB=00101
427                          * - nonshared device is TEXCB=01000
428                          * - write combine device mem is TEXCB=00100
429                          * (Inner/Outer Uncacheable in xsc3 parlance)
430                          */
431                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
432                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
433                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
434                 } else {
435                         /*
436                          * For ARMv6 and ARMv7 without TEX remapping,
437                          * - shared device is TEXCB=00001
438                          * - nonshared device is TEXCB=01000
439                          * - write combine device mem is TEXCB=00100
440                          * (Uncached Normal in ARMv6 parlance).
441                          */
442                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
443                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
444                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
445                 }
446         } else {
447                 /*
448                  * On others, write combining is "Uncached/Buffered"
449                  */
450                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
451         }
452
453         /*
454          * Now deal with the memory-type mappings
455          */
456         cp = &cache_policies[cachepolicy];
457         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
458         s2_pgprot = cp->pte_s2;
459         hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
460
461         /*
462          * We don't use domains on ARMv6 (since this causes problems with
463          * v6/v7 kernels), so we must use a separate memory type for user
464          * r/o, kernel r/w to map the vectors page.
465          */
466 #ifndef CONFIG_ARM_LPAE
467         if (cpu_arch == CPU_ARCH_ARMv6)
468                 vecs_pgprot |= L_PTE_MT_VECTORS;
469 #endif
470
471         /*
472          * ARMv6 and above have extended page tables.
473          */
474         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
475 #ifndef CONFIG_ARM_LPAE
476                 /*
477                  * Mark cache clean areas and XIP ROM read only
478                  * from SVC mode and no access from userspace.
479                  */
480                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
481                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
482                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
483 #endif
484
485                 if (is_smp()) {
486                         /*
487                          * Mark memory with the "shared" attribute
488                          * for SMP systems
489                          */
490                         user_pgprot |= L_PTE_SHARED;
491                         kern_pgprot |= L_PTE_SHARED;
492                         vecs_pgprot |= L_PTE_SHARED;
493                         s2_pgprot |= L_PTE_SHARED;
494                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
495                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
496                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
497                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
498                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
499                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
500                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
501                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
502                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
503                 }
504         }
505
506         /*
507          * Non-cacheable Normal - intended for memory areas that must
508          * not cause dirty cache line writebacks when used
509          */
510         if (cpu_arch >= CPU_ARCH_ARMv6) {
511                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
512                         /* Non-cacheable Normal is XCB = 001 */
513                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
514                                 PMD_SECT_BUFFERED;
515                 } else {
516                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
517                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
518                                 PMD_SECT_TEX(1);
519                 }
520         } else {
521                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
522         }
523
524 #ifdef CONFIG_ARM_LPAE
525         /*
526          * Do not generate access flag faults for the kernel mappings.
527          */
528         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
529                 mem_types[i].prot_pte |= PTE_EXT_AF;
530                 if (mem_types[i].prot_sect)
531                         mem_types[i].prot_sect |= PMD_SECT_AF;
532         }
533         kern_pgprot |= PTE_EXT_AF;
534         vecs_pgprot |= PTE_EXT_AF;
535 #endif
536
537         for (i = 0; i < 16; i++) {
538                 pteval_t v = pgprot_val(protection_map[i]);
539                 protection_map[i] = __pgprot(v | user_pgprot);
540         }
541
542         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
543         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
544
545         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
546         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
547                                  L_PTE_DIRTY | kern_pgprot);
548         pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
549         pgprot_s2_device  = __pgprot(s2_device_pgprot);
550         pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
551
552         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
553         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
554         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
555         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
556         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
557         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
558         mem_types[MT_ROM].prot_sect |= cp->pmd;
559
560         switch (cp->pmd) {
561         case PMD_SECT_WT:
562                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
563                 break;
564         case PMD_SECT_WB:
565         case PMD_SECT_WBWA:
566                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
567                 break;
568         }
569         printk("Memory policy: ECC %sabled, Data cache %s\n",
570                 ecc_mask ? "en" : "dis", cp->policy);
571
572         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
573                 struct mem_type *t = &mem_types[i];
574                 if (t->prot_l1)
575                         t->prot_l1 |= PMD_DOMAIN(t->domain);
576                 if (t->prot_sect)
577                         t->prot_sect |= PMD_DOMAIN(t->domain);
578         }
579 }
580
581 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
582 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
583                               unsigned long size, pgprot_t vma_prot)
584 {
585         if (!pfn_valid(pfn))
586                 return pgprot_noncached(vma_prot);
587         else if (file->f_flags & O_SYNC)
588                 return pgprot_writecombine(vma_prot);
589         return vma_prot;
590 }
591 EXPORT_SYMBOL(phys_mem_access_prot);
592 #endif
593
594 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
595
596 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
597 {
598         void *ptr = __va(memblock_alloc(sz, align));
599         memset(ptr, 0, sz);
600         return ptr;
601 }
602
603 static void __init *early_alloc(unsigned long sz)
604 {
605         return early_alloc_aligned(sz, sz);
606 }
607
608 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
609 {
610         if (pmd_none(*pmd)) {
611                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
612                 __pmd_populate(pmd, __pa(pte), prot);
613         }
614         BUG_ON(pmd_bad(*pmd));
615         return pte_offset_kernel(pmd, addr);
616 }
617
618 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
619                                   unsigned long end, unsigned long pfn,
620                                   const struct mem_type *type)
621 {
622         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
623         do {
624                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
625                 pfn++;
626         } while (pte++, addr += PAGE_SIZE, addr != end);
627 }
628
629 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
630                         unsigned long end, phys_addr_t phys,
631                         const struct mem_type *type)
632 {
633         pmd_t *p = pmd;
634
635 #ifndef CONFIG_ARM_LPAE
636         /*
637          * In classic MMU format, puds and pmds are folded in to
638          * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
639          * group of L1 entries making up one logical pointer to
640          * an L2 table (2MB), where as PMDs refer to the individual
641          * L1 entries (1MB). Hence increment to get the correct
642          * offset for odd 1MB sections.
643          * (See arch/arm/include/asm/pgtable-2level.h)
644          */
645         if (addr & SECTION_SIZE)
646                 pmd++;
647 #endif
648         do {
649                 *pmd = __pmd(phys | type->prot_sect);
650                 phys += SECTION_SIZE;
651         } while (pmd++, addr += SECTION_SIZE, addr != end);
652
653         flush_pmd_entry(p);
654 }
655
656 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
657                                       unsigned long end, phys_addr_t phys,
658                                       const struct mem_type *type)
659 {
660         pmd_t *pmd = pmd_offset(pud, addr);
661         unsigned long next;
662
663         do {
664                 /*
665                  * With LPAE, we must loop over to map
666                  * all the pmds for the given range.
667                  */
668                 next = pmd_addr_end(addr, end);
669
670                 /*
671                  * Try a section mapping - addr, next and phys must all be
672                  * aligned to a section boundary.
673                  */
674                 if (type->prot_sect &&
675                                 ((addr | next | phys) & ~SECTION_MASK) == 0) {
676                         __map_init_section(pmd, addr, next, phys, type);
677                 } else {
678                         alloc_init_pte(pmd, addr, next,
679                                                 __phys_to_pfn(phys), type);
680                 }
681
682                 phys += next - addr;
683
684         } while (pmd++, addr = next, addr != end);
685 }
686
687 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
688                                   unsigned long end, phys_addr_t phys,
689                                   const struct mem_type *type)
690 {
691         pud_t *pud = pud_offset(pgd, addr);
692         unsigned long next;
693
694         do {
695                 next = pud_addr_end(addr, end);
696                 alloc_init_pmd(pud, addr, next, phys, type);
697                 phys += next - addr;
698         } while (pud++, addr = next, addr != end);
699 }
700
701 #ifndef CONFIG_ARM_LPAE
702 static void __init create_36bit_mapping(struct map_desc *md,
703                                         const struct mem_type *type)
704 {
705         unsigned long addr, length, end;
706         phys_addr_t phys;
707         pgd_t *pgd;
708
709         addr = md->virtual;
710         phys = __pfn_to_phys(md->pfn);
711         length = PAGE_ALIGN(md->length);
712
713         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
714                 printk(KERN_ERR "MM: CPU does not support supersection "
715                        "mapping for 0x%08llx at 0x%08lx\n",
716                        (long long)__pfn_to_phys((u64)md->pfn), addr);
717                 return;
718         }
719
720         /* N.B. ARMv6 supersections are only defined to work with domain 0.
721          *      Since domain assignments can in fact be arbitrary, the
722          *      'domain == 0' check below is required to insure that ARMv6
723          *      supersections are only allocated for domain 0 regardless
724          *      of the actual domain assignments in use.
725          */
726         if (type->domain) {
727                 printk(KERN_ERR "MM: invalid domain in supersection "
728                        "mapping for 0x%08llx at 0x%08lx\n",
729                        (long long)__pfn_to_phys((u64)md->pfn), addr);
730                 return;
731         }
732
733         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
734                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
735                        " at 0x%08lx invalid alignment\n",
736                        (long long)__pfn_to_phys((u64)md->pfn), addr);
737                 return;
738         }
739
740         /*
741          * Shift bits [35:32] of address into bits [23:20] of PMD
742          * (See ARMv6 spec).
743          */
744         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
745
746         pgd = pgd_offset_k(addr);
747         end = addr + length;
748         do {
749                 pud_t *pud = pud_offset(pgd, addr);
750                 pmd_t *pmd = pmd_offset(pud, addr);
751                 int i;
752
753                 for (i = 0; i < 16; i++)
754                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
755
756                 addr += SUPERSECTION_SIZE;
757                 phys += SUPERSECTION_SIZE;
758                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
759         } while (addr != end);
760 }
761 #endif  /* !CONFIG_ARM_LPAE */
762
763 /*
764  * Create the page directory entries and any necessary
765  * page tables for the mapping specified by `md'.  We
766  * are able to cope here with varying sizes and address
767  * offsets, and we take full advantage of sections and
768  * supersections.
769  */
770 static void __init create_mapping(struct map_desc *md)
771 {
772         unsigned long addr, length, end;
773         phys_addr_t phys;
774         const struct mem_type *type;
775         pgd_t *pgd;
776
777         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
778                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
779                        " at 0x%08lx in user region\n",
780                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
781                 return;
782         }
783
784         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
785             md->virtual >= PAGE_OFFSET &&
786             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
787                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
788                        " at 0x%08lx out of vmalloc space\n",
789                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
790         }
791
792         type = &mem_types[md->type];
793
794 #ifndef CONFIG_ARM_LPAE
795         /*
796          * Catch 36-bit addresses
797          */
798         if (md->pfn >= 0x100000) {
799                 create_36bit_mapping(md, type);
800                 return;
801         }
802 #endif
803
804         addr = md->virtual & PAGE_MASK;
805         phys = __pfn_to_phys(md->pfn);
806         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
807
808         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
809                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
810                        "be mapped using pages, ignoring.\n",
811                        (long long)__pfn_to_phys(md->pfn), addr);
812                 return;
813         }
814
815         pgd = pgd_offset_k(addr);
816         end = addr + length;
817         do {
818                 unsigned long next = pgd_addr_end(addr, end);
819
820                 alloc_init_pud(pgd, addr, next, phys, type);
821
822                 phys += next - addr;
823                 addr = next;
824         } while (pgd++, addr != end);
825 }
826
827 /*
828  * Create the architecture specific mappings
829  */
830 void __init iotable_init(struct map_desc *io_desc, int nr)
831 {
832         struct map_desc *md;
833         struct vm_struct *vm;
834         struct static_vm *svm;
835
836         if (!nr)
837                 return;
838
839         svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
840
841         for (md = io_desc; nr; md++, nr--) {
842                 create_mapping(md);
843
844                 vm = &svm->vm;
845                 vm->addr = (void *)(md->virtual & PAGE_MASK);
846                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
847                 vm->phys_addr = __pfn_to_phys(md->pfn);
848                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
849                 vm->flags |= VM_ARM_MTYPE(md->type);
850                 vm->caller = iotable_init;
851                 add_static_vm_early(svm++);
852         }
853 }
854
855 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
856                                   void *caller)
857 {
858         struct vm_struct *vm;
859         struct static_vm *svm;
860
861         svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
862
863         vm = &svm->vm;
864         vm->addr = (void *)addr;
865         vm->size = size;
866         vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
867         vm->caller = caller;
868         add_static_vm_early(svm);
869 }
870
871 #ifndef CONFIG_ARM_LPAE
872
873 /*
874  * The Linux PMD is made of two consecutive section entries covering 2MB
875  * (see definition in include/asm/pgtable-2level.h).  However a call to
876  * create_mapping() may optimize static mappings by using individual
877  * 1MB section mappings.  This leaves the actual PMD potentially half
878  * initialized if the top or bottom section entry isn't used, leaving it
879  * open to problems if a subsequent ioremap() or vmalloc() tries to use
880  * the virtual space left free by that unused section entry.
881  *
882  * Let's avoid the issue by inserting dummy vm entries covering the unused
883  * PMD halves once the static mappings are in place.
884  */
885
886 static void __init pmd_empty_section_gap(unsigned long addr)
887 {
888         vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
889 }
890
891 static void __init fill_pmd_gaps(void)
892 {
893         struct static_vm *svm;
894         struct vm_struct *vm;
895         unsigned long addr, next = 0;
896         pmd_t *pmd;
897
898         list_for_each_entry(svm, &static_vmlist, list) {
899                 vm = &svm->vm;
900                 addr = (unsigned long)vm->addr;
901                 if (addr < next)
902                         continue;
903
904                 /*
905                  * Check if this vm starts on an odd section boundary.
906                  * If so and the first section entry for this PMD is free
907                  * then we block the corresponding virtual address.
908                  */
909                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
910                         pmd = pmd_off_k(addr);
911                         if (pmd_none(*pmd))
912                                 pmd_empty_section_gap(addr & PMD_MASK);
913                 }
914
915                 /*
916                  * Then check if this vm ends on an odd section boundary.
917                  * If so and the second section entry for this PMD is empty
918                  * then we block the corresponding virtual address.
919                  */
920                 addr += vm->size;
921                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
922                         pmd = pmd_off_k(addr) + 1;
923                         if (pmd_none(*pmd))
924                                 pmd_empty_section_gap(addr);
925                 }
926
927                 /* no need to look at any vm entry until we hit the next PMD */
928                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
929         }
930 }
931
932 #else
933 #define fill_pmd_gaps() do { } while (0)
934 #endif
935
936 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
937 static void __init pci_reserve_io(void)
938 {
939         struct static_vm *svm;
940
941         svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
942         if (svm)
943                 return;
944
945         vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
946 }
947 #else
948 #define pci_reserve_io() do { } while (0)
949 #endif
950
951 #ifdef CONFIG_DEBUG_LL
952 void __init debug_ll_io_init(void)
953 {
954         struct map_desc map;
955
956         debug_ll_addr(&map.pfn, &map.virtual);
957         if (!map.pfn || !map.virtual)
958                 return;
959         map.pfn = __phys_to_pfn(map.pfn);
960         map.virtual &= PAGE_MASK;
961         map.length = PAGE_SIZE;
962         map.type = MT_DEVICE;
963         create_mapping(&map);
964 }
965 #endif
966
967 static void * __initdata vmalloc_min =
968         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
969
970 /*
971  * vmalloc=size forces the vmalloc area to be exactly 'size'
972  * bytes. This can be used to increase (or decrease) the vmalloc
973  * area - the default is 240m.
974  */
975 static int __init early_vmalloc(char *arg)
976 {
977         unsigned long vmalloc_reserve = memparse(arg, NULL);
978
979         if (vmalloc_reserve < SZ_16M) {
980                 vmalloc_reserve = SZ_16M;
981                 printk(KERN_WARNING
982                         "vmalloc area too small, limiting to %luMB\n",
983                         vmalloc_reserve >> 20);
984         }
985
986         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
987                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
988                 printk(KERN_WARNING
989                         "vmalloc area is too big, limiting to %luMB\n",
990                         vmalloc_reserve >> 20);
991         }
992
993         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
994         return 0;
995 }
996 early_param("vmalloc", early_vmalloc);
997
998 phys_addr_t arm_lowmem_limit __initdata = 0;
999
1000 void __init sanity_check_meminfo(void)
1001 {
1002         int i, j, highmem = 0;
1003
1004         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1005                 struct membank *bank = &meminfo.bank[j];
1006                 *bank = meminfo.bank[i];
1007
1008                 if (bank->start > ULONG_MAX)
1009                         highmem = 1;
1010
1011 #ifdef CONFIG_HIGHMEM
1012                 if (__va(bank->start) >= vmalloc_min ||
1013                     __va(bank->start) < (void *)PAGE_OFFSET)
1014                         highmem = 1;
1015
1016                 bank->highmem = highmem;
1017
1018                 /*
1019                  * Split those memory banks which are partially overlapping
1020                  * the vmalloc area greatly simplifying things later.
1021                  */
1022                 if (!highmem && __va(bank->start) < vmalloc_min &&
1023                     bank->size > vmalloc_min - __va(bank->start)) {
1024                         if (meminfo.nr_banks >= NR_BANKS) {
1025                                 printk(KERN_CRIT "NR_BANKS too low, "
1026                                                  "ignoring high memory\n");
1027                         } else {
1028                                 memmove(bank + 1, bank,
1029                                         (meminfo.nr_banks - i) * sizeof(*bank));
1030                                 meminfo.nr_banks++;
1031                                 i++;
1032                                 bank[1].size -= vmalloc_min - __va(bank->start);
1033                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
1034                                 bank[1].highmem = highmem = 1;
1035                                 j++;
1036                         }
1037                         bank->size = vmalloc_min - __va(bank->start);
1038                 }
1039 #else
1040                 bank->highmem = highmem;
1041
1042                 /*
1043                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
1044                  */
1045                 if (highmem) {
1046                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1047                                "(!CONFIG_HIGHMEM).\n",
1048                                (unsigned long long)bank->start,
1049                                (unsigned long long)bank->start + bank->size - 1);
1050                         continue;
1051                 }
1052
1053                 /*
1054                  * Check whether this memory bank would entirely overlap
1055                  * the vmalloc area.
1056                  */
1057                 if (__va(bank->start) >= vmalloc_min ||
1058                     __va(bank->start) < (void *)PAGE_OFFSET) {
1059                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1060                                "(vmalloc region overlap).\n",
1061                                (unsigned long long)bank->start,
1062                                (unsigned long long)bank->start + bank->size - 1);
1063                         continue;
1064                 }
1065
1066                 /*
1067                  * Check whether this memory bank would partially overlap
1068                  * the vmalloc area.
1069                  */
1070                 if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
1071                     __va(bank->start + bank->size - 1) <= __va(bank->start)) {
1072                         unsigned long newsize = vmalloc_min - __va(bank->start);
1073                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1074                                "to -%.8llx (vmalloc region overlap).\n",
1075                                (unsigned long long)bank->start,
1076                                (unsigned long long)bank->start + bank->size - 1,
1077                                (unsigned long long)bank->start + newsize - 1);
1078                         bank->size = newsize;
1079                 }
1080 #endif
1081                 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1082                         arm_lowmem_limit = bank->start + bank->size;
1083
1084                 j++;
1085         }
1086 #ifdef CONFIG_HIGHMEM
1087         if (highmem) {
1088                 const char *reason = NULL;
1089
1090                 if (cache_is_vipt_aliasing()) {
1091                         /*
1092                          * Interactions between kmap and other mappings
1093                          * make highmem support with aliasing VIPT caches
1094                          * rather difficult.
1095                          */
1096                         reason = "with VIPT aliasing cache";
1097                 }
1098                 if (reason) {
1099                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1100                                 reason);
1101                         while (j > 0 && meminfo.bank[j - 1].highmem)
1102                                 j--;
1103                 }
1104         }
1105 #endif
1106         meminfo.nr_banks = j;
1107         high_memory = __va(arm_lowmem_limit - 1) + 1;
1108         memblock_set_current_limit(arm_lowmem_limit);
1109 }
1110
1111 static inline void prepare_page_table(void)
1112 {
1113         unsigned long addr;
1114         phys_addr_t end;
1115
1116         /*
1117          * Clear out all the mappings below the kernel image.
1118          */
1119         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1120                 pmd_clear(pmd_off_k(addr));
1121
1122 #ifdef CONFIG_XIP_KERNEL
1123         /* The XIP kernel is mapped in the module area -- skip over it */
1124         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1125 #endif
1126         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1127                 pmd_clear(pmd_off_k(addr));
1128
1129         /*
1130          * Find the end of the first block of lowmem.
1131          */
1132         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1133         if (end >= arm_lowmem_limit)
1134                 end = arm_lowmem_limit;
1135
1136         /*
1137          * Clear out all the kernel space mappings, except for the first
1138          * memory bank, up to the vmalloc region.
1139          */
1140         for (addr = __phys_to_virt(end);
1141              addr < VMALLOC_START; addr += PMD_SIZE)
1142                 pmd_clear(pmd_off_k(addr));
1143 }
1144
1145 #ifdef CONFIG_ARM_LPAE
1146 /* the first page is reserved for pgd */
1147 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1148                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1149 #else
1150 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1151 #endif
1152
1153 /*
1154  * Reserve the special regions of memory
1155  */
1156 void __init arm_mm_memblock_reserve(void)
1157 {
1158         /*
1159          * Reserve the page tables.  These are already in use,
1160          * and can only be in node 0.
1161          */
1162         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1163
1164 #ifdef CONFIG_SA1111
1165         /*
1166          * Because of the SA1111 DMA bug, we want to preserve our
1167          * precious DMA-able memory...
1168          */
1169         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1170 #endif
1171 }
1172
1173 /*
1174  * Set up the device mappings.  Since we clear out the page tables for all
1175  * mappings above VMALLOC_START, we will remove any debug device mappings.
1176  * This means you have to be careful how you debug this function, or any
1177  * called function.  This means you can't use any function or debugging
1178  * method which may touch any device, otherwise the kernel _will_ crash.
1179  */
1180 static void __init devicemaps_init(struct machine_desc *mdesc)
1181 {
1182         struct map_desc map;
1183         unsigned long addr;
1184         void *vectors;
1185
1186         /*
1187          * Allocate the vector page early.
1188          */
1189         vectors = early_alloc(PAGE_SIZE * 2);
1190
1191         early_trap_init(vectors);
1192
1193         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1194                 pmd_clear(pmd_off_k(addr));
1195
1196         /*
1197          * Map the kernel if it is XIP.
1198          * It is always first in the modulearea.
1199          */
1200 #ifdef CONFIG_XIP_KERNEL
1201         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1202         map.virtual = MODULES_VADDR;
1203         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1204         map.type = MT_ROM;
1205         create_mapping(&map);
1206 #endif
1207
1208         /*
1209          * Map the cache flushing regions.
1210          */
1211 #ifdef FLUSH_BASE
1212         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1213         map.virtual = FLUSH_BASE;
1214         map.length = SZ_1M;
1215         map.type = MT_CACHECLEAN;
1216         create_mapping(&map);
1217 #endif
1218 #ifdef FLUSH_BASE_MINICACHE
1219         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1220         map.virtual = FLUSH_BASE_MINICACHE;
1221         map.length = SZ_1M;
1222         map.type = MT_MINICLEAN;
1223         create_mapping(&map);
1224 #endif
1225
1226         /*
1227          * Create a mapping for the machine vectors at the high-vectors
1228          * location (0xffff0000).  If we aren't using high-vectors, also
1229          * create a mapping at the low-vectors virtual address.
1230          */
1231         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1232         map.virtual = 0xffff0000;
1233         map.length = PAGE_SIZE;
1234 #ifdef CONFIG_KUSER_HELPERS
1235         map.type = MT_HIGH_VECTORS;
1236 #else
1237         map.type = MT_LOW_VECTORS;
1238 #endif
1239         create_mapping(&map);
1240
1241         if (!vectors_high()) {
1242                 map.virtual = 0;
1243                 map.length = PAGE_SIZE * 2;
1244                 map.type = MT_LOW_VECTORS;
1245                 create_mapping(&map);
1246         }
1247
1248         /* Now create a kernel read-only mapping */
1249         map.pfn += 1;
1250         map.virtual = 0xffff0000 + PAGE_SIZE;
1251         map.length = PAGE_SIZE;
1252         map.type = MT_LOW_VECTORS;
1253         create_mapping(&map);
1254
1255         /*
1256          * Ask the machine support to map in the statically mapped devices.
1257          */
1258         if (mdesc->map_io)
1259                 mdesc->map_io();
1260         fill_pmd_gaps();
1261
1262         /* Reserve fixed i/o space in VMALLOC region */
1263         pci_reserve_io();
1264
1265         /*
1266          * Finally flush the caches and tlb to ensure that we're in a
1267          * consistent state wrt the writebuffer.  This also ensures that
1268          * any write-allocated cache lines in the vector page are written
1269          * back.  After this point, we can start to touch devices again.
1270          */
1271         local_flush_tlb_all();
1272         flush_cache_all();
1273 }
1274
1275 static void __init kmap_init(void)
1276 {
1277 #ifdef CONFIG_HIGHMEM
1278         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1279                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1280 #endif
1281 }
1282
1283 static void __init map_lowmem(void)
1284 {
1285         struct memblock_region *reg;
1286
1287         /* Map all the lowmem memory banks. */
1288         for_each_memblock(memory, reg) {
1289                 phys_addr_t start = reg->base;
1290                 phys_addr_t end = start + reg->size;
1291                 struct map_desc map;
1292
1293                 if (end > arm_lowmem_limit)
1294                         end = arm_lowmem_limit;
1295                 if (start >= end)
1296                         break;
1297
1298                 map.pfn = __phys_to_pfn(start);
1299                 map.virtual = __phys_to_virt(start);
1300                 map.length = end - start;
1301                 map.type = MT_MEMORY;
1302
1303                 create_mapping(&map);
1304         }
1305 }
1306
1307 /*
1308  * paging_init() sets up the page tables, initialises the zone memory
1309  * maps, and sets up the zero page, bad page and bad page tables.
1310  */
1311 void __init paging_init(struct machine_desc *mdesc)
1312 {
1313         void *zero_page;
1314
1315         memblock_set_current_limit(arm_lowmem_limit);
1316
1317         build_mem_type_table();
1318         prepare_page_table();
1319         map_lowmem();
1320         dma_contiguous_remap();
1321         devicemaps_init(mdesc);
1322         kmap_init();
1323         tcm_init();
1324
1325         top_pmd = pmd_off_k(0xffff0000);
1326
1327         /* allocate the zero page. */
1328         zero_page = early_alloc(PAGE_SIZE);
1329
1330         bootmem_init();
1331
1332         empty_zero_page = virt_to_page(zero_page);
1333         __flush_dcache_page(NULL, empty_zero_page);
1334 }