Merge branch 'v3.10/topic/pinctrl' into linux-linaro-lsk
[firefly-linux-kernel-4.4.55.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35
36 #include "mm.h"
37 #include "tcm.h"
38
39 /*
40  * empty_zero_page is a special page that is used for
41  * zero-initialized data and COW.
42  */
43 struct page *empty_zero_page;
44 EXPORT_SYMBOL(empty_zero_page);
45
46 /*
47  * The pmd table for the upper-most set of pages.
48  */
49 pmd_t *top_pmd;
50
51 #define CPOLICY_UNCACHED        0
52 #define CPOLICY_BUFFERED        1
53 #define CPOLICY_WRITETHROUGH    2
54 #define CPOLICY_WRITEBACK       3
55 #define CPOLICY_WRITEALLOC      4
56
57 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
58 static unsigned int ecc_mask __initdata = 0;
59 pgprot_t pgprot_user;
60 pgprot_t pgprot_kernel;
61 pgprot_t pgprot_hyp_device;
62 pgprot_t pgprot_s2;
63 pgprot_t pgprot_s2_device;
64
65 EXPORT_SYMBOL(pgprot_user);
66 EXPORT_SYMBOL(pgprot_kernel);
67
68 struct cachepolicy {
69         const char      policy[16];
70         unsigned int    cr_mask;
71         pmdval_t        pmd;
72         pteval_t        pte;
73         pteval_t        pte_s2;
74 };
75
76 #ifdef CONFIG_ARM_LPAE
77 #define s2_policy(policy)       policy
78 #else
79 #define s2_policy(policy)       0
80 #endif
81
82 static struct cachepolicy cache_policies[] __initdata = {
83         {
84                 .policy         = "uncached",
85                 .cr_mask        = CR_W|CR_C,
86                 .pmd            = PMD_SECT_UNCACHED,
87                 .pte            = L_PTE_MT_UNCACHED,
88                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
89         }, {
90                 .policy         = "buffered",
91                 .cr_mask        = CR_C,
92                 .pmd            = PMD_SECT_BUFFERED,
93                 .pte            = L_PTE_MT_BUFFERABLE,
94                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
95         }, {
96                 .policy         = "writethrough",
97                 .cr_mask        = 0,
98                 .pmd            = PMD_SECT_WT,
99                 .pte            = L_PTE_MT_WRITETHROUGH,
100                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
101         }, {
102                 .policy         = "writeback",
103                 .cr_mask        = 0,
104                 .pmd            = PMD_SECT_WB,
105                 .pte            = L_PTE_MT_WRITEBACK,
106                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
107         }, {
108                 .policy         = "writealloc",
109                 .cr_mask        = 0,
110                 .pmd            = PMD_SECT_WBWA,
111                 .pte            = L_PTE_MT_WRITEALLOC,
112                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
113         }
114 };
115
116 #ifdef CONFIG_CPU_CP15
117 /*
118  * These are useful for identifying cache coherency
119  * problems by allowing the cache or the cache and
120  * writebuffer to be turned off.  (Note: the write
121  * buffer should not be on and the cache off).
122  */
123 static int __init early_cachepolicy(char *p)
124 {
125         int i;
126
127         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
128                 int len = strlen(cache_policies[i].policy);
129
130                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
131                         cachepolicy = i;
132                         cr_alignment &= ~cache_policies[i].cr_mask;
133                         cr_no_alignment &= ~cache_policies[i].cr_mask;
134                         break;
135                 }
136         }
137         if (i == ARRAY_SIZE(cache_policies))
138                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
139         /*
140          * This restriction is partly to do with the way we boot; it is
141          * unpredictable to have memory mapped using two different sets of
142          * memory attributes (shared, type, and cache attribs).  We can not
143          * change these attributes once the initial assembly has setup the
144          * page tables.
145          */
146         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
147                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
148                 cachepolicy = CPOLICY_WRITEBACK;
149         }
150         flush_cache_all();
151         set_cr(cr_alignment);
152         return 0;
153 }
154 early_param("cachepolicy", early_cachepolicy);
155
156 static int __init early_nocache(char *__unused)
157 {
158         char *p = "buffered";
159         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
160         early_cachepolicy(p);
161         return 0;
162 }
163 early_param("nocache", early_nocache);
164
165 static int __init early_nowrite(char *__unused)
166 {
167         char *p = "uncached";
168         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
169         early_cachepolicy(p);
170         return 0;
171 }
172 early_param("nowb", early_nowrite);
173
174 #ifndef CONFIG_ARM_LPAE
175 static int __init early_ecc(char *p)
176 {
177         if (memcmp(p, "on", 2) == 0)
178                 ecc_mask = PMD_PROTECTION;
179         else if (memcmp(p, "off", 3) == 0)
180                 ecc_mask = 0;
181         return 0;
182 }
183 early_param("ecc", early_ecc);
184 #endif
185
186 static int __init noalign_setup(char *__unused)
187 {
188         cr_alignment &= ~CR_A;
189         cr_no_alignment &= ~CR_A;
190         set_cr(cr_alignment);
191         return 1;
192 }
193 __setup("noalign", noalign_setup);
194
195 #ifndef CONFIG_SMP
196 void adjust_cr(unsigned long mask, unsigned long set)
197 {
198         unsigned long flags;
199
200         mask &= ~CR_A;
201
202         set &= mask;
203
204         local_irq_save(flags);
205
206         cr_no_alignment = (cr_no_alignment & ~mask) | set;
207         cr_alignment = (cr_alignment & ~mask) | set;
208
209         set_cr((get_cr() & ~mask) | set);
210
211         local_irq_restore(flags);
212 }
213 #endif
214
215 #else /* ifdef CONFIG_CPU_CP15 */
216
217 static int __init early_cachepolicy(char *p)
218 {
219         pr_warning("cachepolicy kernel parameter not supported without cp15\n");
220 }
221 early_param("cachepolicy", early_cachepolicy);
222
223 static int __init noalign_setup(char *__unused)
224 {
225         pr_warning("noalign kernel parameter not supported without cp15\n");
226 }
227 __setup("noalign", noalign_setup);
228
229 #endif /* ifdef CONFIG_CPU_CP15 / else */
230
231 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
232 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
233
234 static struct mem_type mem_types[] = {
235         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
236                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
237                                   L_PTE_SHARED,
238                 .prot_l1        = PMD_TYPE_TABLE,
239                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
240                 .domain         = DOMAIN_IO,
241         },
242         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
243                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
244                 .prot_l1        = PMD_TYPE_TABLE,
245                 .prot_sect      = PROT_SECT_DEVICE,
246                 .domain         = DOMAIN_IO,
247         },
248         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
249                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
250                 .prot_l1        = PMD_TYPE_TABLE,
251                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
252                 .domain         = DOMAIN_IO,
253         },
254         [MT_DEVICE_WC] = {      /* ioremap_wc */
255                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
256                 .prot_l1        = PMD_TYPE_TABLE,
257                 .prot_sect      = PROT_SECT_DEVICE,
258                 .domain         = DOMAIN_IO,
259         },
260         [MT_UNCACHED] = {
261                 .prot_pte       = PROT_PTE_DEVICE,
262                 .prot_l1        = PMD_TYPE_TABLE,
263                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
264                 .domain         = DOMAIN_IO,
265         },
266         [MT_CACHECLEAN] = {
267                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
268                 .domain    = DOMAIN_KERNEL,
269         },
270 #ifndef CONFIG_ARM_LPAE
271         [MT_MINICLEAN] = {
272                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
273                 .domain    = DOMAIN_KERNEL,
274         },
275 #endif
276         [MT_LOW_VECTORS] = {
277                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
278                                 L_PTE_RDONLY,
279                 .prot_l1   = PMD_TYPE_TABLE,
280                 .domain    = DOMAIN_USER,
281         },
282         [MT_HIGH_VECTORS] = {
283                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
284                                 L_PTE_USER | L_PTE_RDONLY,
285                 .prot_l1   = PMD_TYPE_TABLE,
286                 .domain    = DOMAIN_USER,
287         },
288         [MT_MEMORY] = {
289                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
290                 .prot_l1   = PMD_TYPE_TABLE,
291                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
292                 .domain    = DOMAIN_KERNEL,
293         },
294         [MT_ROM] = {
295                 .prot_sect = PMD_TYPE_SECT,
296                 .domain    = DOMAIN_KERNEL,
297         },
298         [MT_MEMORY_NONCACHED] = {
299                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
300                                 L_PTE_MT_BUFFERABLE,
301                 .prot_l1   = PMD_TYPE_TABLE,
302                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
303                 .domain    = DOMAIN_KERNEL,
304         },
305         [MT_MEMORY_DTCM] = {
306                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
307                                 L_PTE_XN,
308                 .prot_l1   = PMD_TYPE_TABLE,
309                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
310                 .domain    = DOMAIN_KERNEL,
311         },
312         [MT_MEMORY_ITCM] = {
313                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
314                 .prot_l1   = PMD_TYPE_TABLE,
315                 .domain    = DOMAIN_KERNEL,
316         },
317         [MT_MEMORY_SO] = {
318                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
319                                 L_PTE_MT_UNCACHED | L_PTE_XN,
320                 .prot_l1   = PMD_TYPE_TABLE,
321                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
322                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
323                 .domain    = DOMAIN_KERNEL,
324         },
325         [MT_MEMORY_DMA_READY] = {
326                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
327                 .prot_l1   = PMD_TYPE_TABLE,
328                 .domain    = DOMAIN_KERNEL,
329         },
330 };
331
332 const struct mem_type *get_mem_type(unsigned int type)
333 {
334         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
335 }
336 EXPORT_SYMBOL(get_mem_type);
337
338 /*
339  * Adjust the PMD section entries according to the CPU in use.
340  */
341 static void __init build_mem_type_table(void)
342 {
343         struct cachepolicy *cp;
344         unsigned int cr = get_cr();
345         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
346         pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
347         int cpu_arch = cpu_architecture();
348         int i;
349
350         if (cpu_arch < CPU_ARCH_ARMv6) {
351 #if defined(CONFIG_CPU_DCACHE_DISABLE)
352                 if (cachepolicy > CPOLICY_BUFFERED)
353                         cachepolicy = CPOLICY_BUFFERED;
354 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
355                 if (cachepolicy > CPOLICY_WRITETHROUGH)
356                         cachepolicy = CPOLICY_WRITETHROUGH;
357 #endif
358         }
359         if (cpu_arch < CPU_ARCH_ARMv5) {
360                 if (cachepolicy >= CPOLICY_WRITEALLOC)
361                         cachepolicy = CPOLICY_WRITEBACK;
362                 ecc_mask = 0;
363         }
364         if (is_smp())
365                 cachepolicy = CPOLICY_WRITEALLOC;
366
367         /*
368          * Strip out features not present on earlier architectures.
369          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
370          * without extended page tables don't have the 'Shared' bit.
371          */
372         if (cpu_arch < CPU_ARCH_ARMv5)
373                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
374                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
375         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
376                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
377                         mem_types[i].prot_sect &= ~PMD_SECT_S;
378
379         /*
380          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
381          * "update-able on write" bit on ARM610).  However, Xscale and
382          * Xscale3 require this bit to be cleared.
383          */
384         if (cpu_is_xscale() || cpu_is_xsc3()) {
385                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
386                         mem_types[i].prot_sect &= ~PMD_BIT4;
387                         mem_types[i].prot_l1 &= ~PMD_BIT4;
388                 }
389         } else if (cpu_arch < CPU_ARCH_ARMv6) {
390                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
391                         if (mem_types[i].prot_l1)
392                                 mem_types[i].prot_l1 |= PMD_BIT4;
393                         if (mem_types[i].prot_sect)
394                                 mem_types[i].prot_sect |= PMD_BIT4;
395                 }
396         }
397
398         /*
399          * Mark the device areas according to the CPU/architecture.
400          */
401         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
402                 if (!cpu_is_xsc3()) {
403                         /*
404                          * Mark device regions on ARMv6+ as execute-never
405                          * to prevent speculative instruction fetches.
406                          */
407                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
408                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
409                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
410                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
411                 }
412                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
413                         /*
414                          * For ARMv7 with TEX remapping,
415                          * - shared device is SXCB=1100
416                          * - nonshared device is SXCB=0100
417                          * - write combine device mem is SXCB=0001
418                          * (Uncached Normal memory)
419                          */
420                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
421                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
422                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
423                 } else if (cpu_is_xsc3()) {
424                         /*
425                          * For Xscale3,
426                          * - shared device is TEXCB=00101
427                          * - nonshared device is TEXCB=01000
428                          * - write combine device mem is TEXCB=00100
429                          * (Inner/Outer Uncacheable in xsc3 parlance)
430                          */
431                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
432                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
433                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
434                 } else {
435                         /*
436                          * For ARMv6 and ARMv7 without TEX remapping,
437                          * - shared device is TEXCB=00001
438                          * - nonshared device is TEXCB=01000
439                          * - write combine device mem is TEXCB=00100
440                          * (Uncached Normal in ARMv6 parlance).
441                          */
442                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
443                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
444                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
445                 }
446         } else {
447                 /*
448                  * On others, write combining is "Uncached/Buffered"
449                  */
450                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
451         }
452
453         /*
454          * Now deal with the memory-type mappings
455          */
456         cp = &cache_policies[cachepolicy];
457         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
458         s2_pgprot = cp->pte_s2;
459         hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
460
461         /*
462          * We don't use domains on ARMv6 (since this causes problems with
463          * v6/v7 kernels), so we must use a separate memory type for user
464          * r/o, kernel r/w to map the vectors page.
465          */
466 #ifndef CONFIG_ARM_LPAE
467         if (cpu_arch == CPU_ARCH_ARMv6)
468                 vecs_pgprot |= L_PTE_MT_VECTORS;
469 #endif
470
471         /*
472          * ARMv6 and above have extended page tables.
473          */
474         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
475 #ifndef CONFIG_ARM_LPAE
476                 /*
477                  * Mark cache clean areas and XIP ROM read only
478                  * from SVC mode and no access from userspace.
479                  */
480                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
481                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
482                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
483 #endif
484
485                 if (is_smp()) {
486                         /*
487                          * Mark memory with the "shared" attribute
488                          * for SMP systems
489                          */
490                         user_pgprot |= L_PTE_SHARED;
491                         kern_pgprot |= L_PTE_SHARED;
492                         vecs_pgprot |= L_PTE_SHARED;
493                         s2_pgprot |= L_PTE_SHARED;
494                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
495                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
496                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
497                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
498                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
499                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
500                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
501                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
502                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
503                 }
504         }
505
506         /*
507          * Non-cacheable Normal - intended for memory areas that must
508          * not cause dirty cache line writebacks when used
509          */
510         if (cpu_arch >= CPU_ARCH_ARMv6) {
511                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
512                         /* Non-cacheable Normal is XCB = 001 */
513                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
514                                 PMD_SECT_BUFFERED;
515                 } else {
516                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
517                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
518                                 PMD_SECT_TEX(1);
519                 }
520         } else {
521                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
522         }
523
524 #ifdef CONFIG_ARM_LPAE
525         /*
526          * Do not generate access flag faults for the kernel mappings.
527          */
528         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
529                 mem_types[i].prot_pte |= PTE_EXT_AF;
530                 if (mem_types[i].prot_sect)
531                         mem_types[i].prot_sect |= PMD_SECT_AF;
532         }
533         kern_pgprot |= PTE_EXT_AF;
534         vecs_pgprot |= PTE_EXT_AF;
535 #endif
536
537         for (i = 0; i < 16; i++) {
538                 pteval_t v = pgprot_val(protection_map[i]);
539                 protection_map[i] = __pgprot(v | user_pgprot);
540         }
541
542         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
543         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
544
545         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
546         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
547                                  L_PTE_DIRTY | kern_pgprot);
548         pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
549         pgprot_s2_device  = __pgprot(s2_device_pgprot);
550         pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
551
552         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
553         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
554         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
555         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
556         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
557         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
558         mem_types[MT_ROM].prot_sect |= cp->pmd;
559
560         switch (cp->pmd) {
561         case PMD_SECT_WT:
562                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
563                 break;
564         case PMD_SECT_WB:
565         case PMD_SECT_WBWA:
566                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
567                 break;
568         }
569         printk("Memory policy: ECC %sabled, Data cache %s\n",
570                 ecc_mask ? "en" : "dis", cp->policy);
571
572         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
573                 struct mem_type *t = &mem_types[i];
574                 if (t->prot_l1)
575                         t->prot_l1 |= PMD_DOMAIN(t->domain);
576                 if (t->prot_sect)
577                         t->prot_sect |= PMD_DOMAIN(t->domain);
578         }
579 }
580
581 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
582 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
583                               unsigned long size, pgprot_t vma_prot)
584 {
585         if (!pfn_valid(pfn))
586                 return pgprot_noncached(vma_prot);
587         else if (file->f_flags & O_SYNC)
588                 return pgprot_writecombine(vma_prot);
589         return vma_prot;
590 }
591 EXPORT_SYMBOL(phys_mem_access_prot);
592 #endif
593
594 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
595
596 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
597 {
598         void *ptr = __va(memblock_alloc(sz, align));
599         memset(ptr, 0, sz);
600         return ptr;
601 }
602
603 static void __init *early_alloc(unsigned long sz)
604 {
605         return early_alloc_aligned(sz, sz);
606 }
607
608 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
609 {
610         if (pmd_none(*pmd)) {
611                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
612                 __pmd_populate(pmd, __pa(pte), prot);
613         }
614         BUG_ON(pmd_bad(*pmd));
615         return pte_offset_kernel(pmd, addr);
616 }
617
618 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
619                                   unsigned long end, unsigned long pfn,
620                                   const struct mem_type *type)
621 {
622         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
623         do {
624                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
625                 pfn++;
626         } while (pte++, addr += PAGE_SIZE, addr != end);
627 }
628
629 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
630                         unsigned long end, phys_addr_t phys,
631                         const struct mem_type *type)
632 {
633         pmd_t *p = pmd;
634
635 #ifndef CONFIG_ARM_LPAE
636         /*
637          * In classic MMU format, puds and pmds are folded in to
638          * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
639          * group of L1 entries making up one logical pointer to
640          * an L2 table (2MB), where as PMDs refer to the individual
641          * L1 entries (1MB). Hence increment to get the correct
642          * offset for odd 1MB sections.
643          * (See arch/arm/include/asm/pgtable-2level.h)
644          */
645         if (addr & SECTION_SIZE)
646                 pmd++;
647 #endif
648         do {
649                 *pmd = __pmd(phys | type->prot_sect);
650                 phys += SECTION_SIZE;
651         } while (pmd++, addr += SECTION_SIZE, addr != end);
652
653         flush_pmd_entry(p);
654 }
655
656 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
657                                       unsigned long end, phys_addr_t phys,
658                                       const struct mem_type *type)
659 {
660         pmd_t *pmd = pmd_offset(pud, addr);
661         unsigned long next;
662
663         do {
664                 /*
665                  * With LPAE, we must loop over to map
666                  * all the pmds for the given range.
667                  */
668                 next = pmd_addr_end(addr, end);
669
670                 /*
671                  * Try a section mapping - addr, next and phys must all be
672                  * aligned to a section boundary.
673                  */
674                 if (type->prot_sect &&
675                                 ((addr | next | phys) & ~SECTION_MASK) == 0) {
676                         __map_init_section(pmd, addr, next, phys, type);
677                 } else {
678                         alloc_init_pte(pmd, addr, next,
679                                                 __phys_to_pfn(phys), type);
680                 }
681
682                 phys += next - addr;
683
684         } while (pmd++, addr = next, addr != end);
685 }
686
687 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
688         unsigned long end, unsigned long phys, const struct mem_type *type)
689 {
690         pud_t *pud = pud_offset(pgd, addr);
691         unsigned long next;
692
693         do {
694                 next = pud_addr_end(addr, end);
695                 alloc_init_pmd(pud, addr, next, phys, type);
696                 phys += next - addr;
697         } while (pud++, addr = next, addr != end);
698 }
699
700 #ifndef CONFIG_ARM_LPAE
701 static void __init create_36bit_mapping(struct map_desc *md,
702                                         const struct mem_type *type)
703 {
704         unsigned long addr, length, end;
705         phys_addr_t phys;
706         pgd_t *pgd;
707
708         addr = md->virtual;
709         phys = __pfn_to_phys(md->pfn);
710         length = PAGE_ALIGN(md->length);
711
712         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
713                 printk(KERN_ERR "MM: CPU does not support supersection "
714                        "mapping for 0x%08llx at 0x%08lx\n",
715                        (long long)__pfn_to_phys((u64)md->pfn), addr);
716                 return;
717         }
718
719         /* N.B. ARMv6 supersections are only defined to work with domain 0.
720          *      Since domain assignments can in fact be arbitrary, the
721          *      'domain == 0' check below is required to insure that ARMv6
722          *      supersections are only allocated for domain 0 regardless
723          *      of the actual domain assignments in use.
724          */
725         if (type->domain) {
726                 printk(KERN_ERR "MM: invalid domain in supersection "
727                        "mapping for 0x%08llx at 0x%08lx\n",
728                        (long long)__pfn_to_phys((u64)md->pfn), addr);
729                 return;
730         }
731
732         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
733                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
734                        " at 0x%08lx invalid alignment\n",
735                        (long long)__pfn_to_phys((u64)md->pfn), addr);
736                 return;
737         }
738
739         /*
740          * Shift bits [35:32] of address into bits [23:20] of PMD
741          * (See ARMv6 spec).
742          */
743         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
744
745         pgd = pgd_offset_k(addr);
746         end = addr + length;
747         do {
748                 pud_t *pud = pud_offset(pgd, addr);
749                 pmd_t *pmd = pmd_offset(pud, addr);
750                 int i;
751
752                 for (i = 0; i < 16; i++)
753                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
754
755                 addr += SUPERSECTION_SIZE;
756                 phys += SUPERSECTION_SIZE;
757                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
758         } while (addr != end);
759 }
760 #endif  /* !CONFIG_ARM_LPAE */
761
762 /*
763  * Create the page directory entries and any necessary
764  * page tables for the mapping specified by `md'.  We
765  * are able to cope here with varying sizes and address
766  * offsets, and we take full advantage of sections and
767  * supersections.
768  */
769 static void __init create_mapping(struct map_desc *md)
770 {
771         unsigned long addr, length, end;
772         phys_addr_t phys;
773         const struct mem_type *type;
774         pgd_t *pgd;
775
776         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
777                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
778                        " at 0x%08lx in user region\n",
779                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
780                 return;
781         }
782
783         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
784             md->virtual >= PAGE_OFFSET &&
785             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
786                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
787                        " at 0x%08lx out of vmalloc space\n",
788                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
789         }
790
791         type = &mem_types[md->type];
792
793 #ifndef CONFIG_ARM_LPAE
794         /*
795          * Catch 36-bit addresses
796          */
797         if (md->pfn >= 0x100000) {
798                 create_36bit_mapping(md, type);
799                 return;
800         }
801 #endif
802
803         addr = md->virtual & PAGE_MASK;
804         phys = __pfn_to_phys(md->pfn);
805         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
806
807         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
808                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
809                        "be mapped using pages, ignoring.\n",
810                        (long long)__pfn_to_phys(md->pfn), addr);
811                 return;
812         }
813
814         pgd = pgd_offset_k(addr);
815         end = addr + length;
816         do {
817                 unsigned long next = pgd_addr_end(addr, end);
818
819                 alloc_init_pud(pgd, addr, next, phys, type);
820
821                 phys += next - addr;
822                 addr = next;
823         } while (pgd++, addr != end);
824 }
825
826 /*
827  * Create the architecture specific mappings
828  */
829 void __init iotable_init(struct map_desc *io_desc, int nr)
830 {
831         struct map_desc *md;
832         struct vm_struct *vm;
833         struct static_vm *svm;
834
835         if (!nr)
836                 return;
837
838         svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
839
840         for (md = io_desc; nr; md++, nr--) {
841                 create_mapping(md);
842
843                 vm = &svm->vm;
844                 vm->addr = (void *)(md->virtual & PAGE_MASK);
845                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
846                 vm->phys_addr = __pfn_to_phys(md->pfn);
847                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
848                 vm->flags |= VM_ARM_MTYPE(md->type);
849                 vm->caller = iotable_init;
850                 add_static_vm_early(svm++);
851         }
852 }
853
854 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
855                                   void *caller)
856 {
857         struct vm_struct *vm;
858         struct static_vm *svm;
859
860         svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
861
862         vm = &svm->vm;
863         vm->addr = (void *)addr;
864         vm->size = size;
865         vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
866         vm->caller = caller;
867         add_static_vm_early(svm);
868 }
869
870 #ifndef CONFIG_ARM_LPAE
871
872 /*
873  * The Linux PMD is made of two consecutive section entries covering 2MB
874  * (see definition in include/asm/pgtable-2level.h).  However a call to
875  * create_mapping() may optimize static mappings by using individual
876  * 1MB section mappings.  This leaves the actual PMD potentially half
877  * initialized if the top or bottom section entry isn't used, leaving it
878  * open to problems if a subsequent ioremap() or vmalloc() tries to use
879  * the virtual space left free by that unused section entry.
880  *
881  * Let's avoid the issue by inserting dummy vm entries covering the unused
882  * PMD halves once the static mappings are in place.
883  */
884
885 static void __init pmd_empty_section_gap(unsigned long addr)
886 {
887         vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
888 }
889
890 static void __init fill_pmd_gaps(void)
891 {
892         struct static_vm *svm;
893         struct vm_struct *vm;
894         unsigned long addr, next = 0;
895         pmd_t *pmd;
896
897         list_for_each_entry(svm, &static_vmlist, list) {
898                 vm = &svm->vm;
899                 addr = (unsigned long)vm->addr;
900                 if (addr < next)
901                         continue;
902
903                 /*
904                  * Check if this vm starts on an odd section boundary.
905                  * If so and the first section entry for this PMD is free
906                  * then we block the corresponding virtual address.
907                  */
908                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
909                         pmd = pmd_off_k(addr);
910                         if (pmd_none(*pmd))
911                                 pmd_empty_section_gap(addr & PMD_MASK);
912                 }
913
914                 /*
915                  * Then check if this vm ends on an odd section boundary.
916                  * If so and the second section entry for this PMD is empty
917                  * then we block the corresponding virtual address.
918                  */
919                 addr += vm->size;
920                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
921                         pmd = pmd_off_k(addr) + 1;
922                         if (pmd_none(*pmd))
923                                 pmd_empty_section_gap(addr);
924                 }
925
926                 /* no need to look at any vm entry until we hit the next PMD */
927                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
928         }
929 }
930
931 #else
932 #define fill_pmd_gaps() do { } while (0)
933 #endif
934
935 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
936 static void __init pci_reserve_io(void)
937 {
938         struct static_vm *svm;
939
940         svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
941         if (svm)
942                 return;
943
944         vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
945 }
946 #else
947 #define pci_reserve_io() do { } while (0)
948 #endif
949
950 #ifdef CONFIG_DEBUG_LL
951 void __init debug_ll_io_init(void)
952 {
953         struct map_desc map;
954
955         debug_ll_addr(&map.pfn, &map.virtual);
956         if (!map.pfn || !map.virtual)
957                 return;
958         map.pfn = __phys_to_pfn(map.pfn);
959         map.virtual &= PAGE_MASK;
960         map.length = PAGE_SIZE;
961         map.type = MT_DEVICE;
962         create_mapping(&map);
963 }
964 #endif
965
966 static void * __initdata vmalloc_min =
967         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
968
969 /*
970  * vmalloc=size forces the vmalloc area to be exactly 'size'
971  * bytes. This can be used to increase (or decrease) the vmalloc
972  * area - the default is 240m.
973  */
974 static int __init early_vmalloc(char *arg)
975 {
976         unsigned long vmalloc_reserve = memparse(arg, NULL);
977
978         if (vmalloc_reserve < SZ_16M) {
979                 vmalloc_reserve = SZ_16M;
980                 printk(KERN_WARNING
981                         "vmalloc area too small, limiting to %luMB\n",
982                         vmalloc_reserve >> 20);
983         }
984
985         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
986                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
987                 printk(KERN_WARNING
988                         "vmalloc area is too big, limiting to %luMB\n",
989                         vmalloc_reserve >> 20);
990         }
991
992         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
993         return 0;
994 }
995 early_param("vmalloc", early_vmalloc);
996
997 phys_addr_t arm_lowmem_limit __initdata = 0;
998
999 void __init sanity_check_meminfo(void)
1000 {
1001         int i, j, highmem = 0;
1002
1003         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1004                 struct membank *bank = &meminfo.bank[j];
1005                 *bank = meminfo.bank[i];
1006
1007                 if (bank->start > ULONG_MAX)
1008                         highmem = 1;
1009
1010 #ifdef CONFIG_HIGHMEM
1011                 if (__va(bank->start) >= vmalloc_min ||
1012                     __va(bank->start) < (void *)PAGE_OFFSET)
1013                         highmem = 1;
1014
1015                 bank->highmem = highmem;
1016
1017                 /*
1018                  * Split those memory banks which are partially overlapping
1019                  * the vmalloc area greatly simplifying things later.
1020                  */
1021                 if (!highmem && __va(bank->start) < vmalloc_min &&
1022                     bank->size > vmalloc_min - __va(bank->start)) {
1023                         if (meminfo.nr_banks >= NR_BANKS) {
1024                                 printk(KERN_CRIT "NR_BANKS too low, "
1025                                                  "ignoring high memory\n");
1026                         } else {
1027                                 memmove(bank + 1, bank,
1028                                         (meminfo.nr_banks - i) * sizeof(*bank));
1029                                 meminfo.nr_banks++;
1030                                 i++;
1031                                 bank[1].size -= vmalloc_min - __va(bank->start);
1032                                 bank[1].start = __pa(vmalloc_min - 1) + 1;
1033                                 bank[1].highmem = highmem = 1;
1034                                 j++;
1035                         }
1036                         bank->size = vmalloc_min - __va(bank->start);
1037                 }
1038 #else
1039                 bank->highmem = highmem;
1040
1041                 /*
1042                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
1043                  */
1044                 if (highmem) {
1045                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1046                                "(!CONFIG_HIGHMEM).\n",
1047                                (unsigned long long)bank->start,
1048                                (unsigned long long)bank->start + bank->size - 1);
1049                         continue;
1050                 }
1051
1052                 /*
1053                  * Check whether this memory bank would entirely overlap
1054                  * the vmalloc area.
1055                  */
1056                 if (__va(bank->start) >= vmalloc_min ||
1057                     __va(bank->start) < (void *)PAGE_OFFSET) {
1058                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1059                                "(vmalloc region overlap).\n",
1060                                (unsigned long long)bank->start,
1061                                (unsigned long long)bank->start + bank->size - 1);
1062                         continue;
1063                 }
1064
1065                 /*
1066                  * Check whether this memory bank would partially overlap
1067                  * the vmalloc area.
1068                  */
1069                 if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
1070                     __va(bank->start + bank->size - 1) <= __va(bank->start)) {
1071                         unsigned long newsize = vmalloc_min - __va(bank->start);
1072                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1073                                "to -%.8llx (vmalloc region overlap).\n",
1074                                (unsigned long long)bank->start,
1075                                (unsigned long long)bank->start + bank->size - 1,
1076                                (unsigned long long)bank->start + newsize - 1);
1077                         bank->size = newsize;
1078                 }
1079 #endif
1080                 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1081                         arm_lowmem_limit = bank->start + bank->size;
1082
1083                 j++;
1084         }
1085 #ifdef CONFIG_HIGHMEM
1086         if (highmem) {
1087                 const char *reason = NULL;
1088
1089                 if (cache_is_vipt_aliasing()) {
1090                         /*
1091                          * Interactions between kmap and other mappings
1092                          * make highmem support with aliasing VIPT caches
1093                          * rather difficult.
1094                          */
1095                         reason = "with VIPT aliasing cache";
1096                 }
1097                 if (reason) {
1098                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1099                                 reason);
1100                         while (j > 0 && meminfo.bank[j - 1].highmem)
1101                                 j--;
1102                 }
1103         }
1104 #endif
1105         meminfo.nr_banks = j;
1106         high_memory = __va(arm_lowmem_limit - 1) + 1;
1107         memblock_set_current_limit(arm_lowmem_limit);
1108 }
1109
1110 static inline void prepare_page_table(void)
1111 {
1112         unsigned long addr;
1113         phys_addr_t end;
1114
1115         /*
1116          * Clear out all the mappings below the kernel image.
1117          */
1118         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1119                 pmd_clear(pmd_off_k(addr));
1120
1121 #ifdef CONFIG_XIP_KERNEL
1122         /* The XIP kernel is mapped in the module area -- skip over it */
1123         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1124 #endif
1125         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1126                 pmd_clear(pmd_off_k(addr));
1127
1128         /*
1129          * Find the end of the first block of lowmem.
1130          */
1131         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1132         if (end >= arm_lowmem_limit)
1133                 end = arm_lowmem_limit;
1134
1135         /*
1136          * Clear out all the kernel space mappings, except for the first
1137          * memory bank, up to the vmalloc region.
1138          */
1139         for (addr = __phys_to_virt(end);
1140              addr < VMALLOC_START; addr += PMD_SIZE)
1141                 pmd_clear(pmd_off_k(addr));
1142 }
1143
1144 #ifdef CONFIG_ARM_LPAE
1145 /* the first page is reserved for pgd */
1146 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1147                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1148 #else
1149 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1150 #endif
1151
1152 /*
1153  * Reserve the special regions of memory
1154  */
1155 void __init arm_mm_memblock_reserve(void)
1156 {
1157         /*
1158          * Reserve the page tables.  These are already in use,
1159          * and can only be in node 0.
1160          */
1161         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1162
1163 #ifdef CONFIG_SA1111
1164         /*
1165          * Because of the SA1111 DMA bug, we want to preserve our
1166          * precious DMA-able memory...
1167          */
1168         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1169 #endif
1170 }
1171
1172 /*
1173  * Set up the device mappings.  Since we clear out the page tables for all
1174  * mappings above VMALLOC_START, we will remove any debug device mappings.
1175  * This means you have to be careful how you debug this function, or any
1176  * called function.  This means you can't use any function or debugging
1177  * method which may touch any device, otherwise the kernel _will_ crash.
1178  */
1179 static void __init devicemaps_init(struct machine_desc *mdesc)
1180 {
1181         struct map_desc map;
1182         unsigned long addr;
1183         void *vectors;
1184
1185         /*
1186          * Allocate the vector page early.
1187          */
1188         vectors = early_alloc(PAGE_SIZE * 2);
1189
1190         early_trap_init(vectors);
1191
1192         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1193                 pmd_clear(pmd_off_k(addr));
1194
1195         /*
1196          * Map the kernel if it is XIP.
1197          * It is always first in the modulearea.
1198          */
1199 #ifdef CONFIG_XIP_KERNEL
1200         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1201         map.virtual = MODULES_VADDR;
1202         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1203         map.type = MT_ROM;
1204         create_mapping(&map);
1205 #endif
1206
1207         /*
1208          * Map the cache flushing regions.
1209          */
1210 #ifdef FLUSH_BASE
1211         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1212         map.virtual = FLUSH_BASE;
1213         map.length = SZ_1M;
1214         map.type = MT_CACHECLEAN;
1215         create_mapping(&map);
1216 #endif
1217 #ifdef FLUSH_BASE_MINICACHE
1218         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1219         map.virtual = FLUSH_BASE_MINICACHE;
1220         map.length = SZ_1M;
1221         map.type = MT_MINICLEAN;
1222         create_mapping(&map);
1223 #endif
1224
1225         /*
1226          * Create a mapping for the machine vectors at the high-vectors
1227          * location (0xffff0000).  If we aren't using high-vectors, also
1228          * create a mapping at the low-vectors virtual address.
1229          */
1230         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1231         map.virtual = 0xffff0000;
1232         map.length = PAGE_SIZE;
1233 #ifdef CONFIG_KUSER_HELPERS
1234         map.type = MT_HIGH_VECTORS;
1235 #else
1236         map.type = MT_LOW_VECTORS;
1237 #endif
1238         create_mapping(&map);
1239
1240         if (!vectors_high()) {
1241                 map.virtual = 0;
1242                 map.length = PAGE_SIZE * 2;
1243                 map.type = MT_LOW_VECTORS;
1244                 create_mapping(&map);
1245         }
1246
1247         /* Now create a kernel read-only mapping */
1248         map.pfn += 1;
1249         map.virtual = 0xffff0000 + PAGE_SIZE;
1250         map.length = PAGE_SIZE;
1251         map.type = MT_LOW_VECTORS;
1252         create_mapping(&map);
1253
1254         /*
1255          * Ask the machine support to map in the statically mapped devices.
1256          */
1257         if (mdesc->map_io)
1258                 mdesc->map_io();
1259         fill_pmd_gaps();
1260
1261         /* Reserve fixed i/o space in VMALLOC region */
1262         pci_reserve_io();
1263
1264         /*
1265          * Finally flush the caches and tlb to ensure that we're in a
1266          * consistent state wrt the writebuffer.  This also ensures that
1267          * any write-allocated cache lines in the vector page are written
1268          * back.  After this point, we can start to touch devices again.
1269          */
1270         local_flush_tlb_all();
1271         flush_cache_all();
1272 }
1273
1274 static void __init kmap_init(void)
1275 {
1276 #ifdef CONFIG_HIGHMEM
1277         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1278                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1279 #endif
1280 }
1281
1282 static void __init map_lowmem(void)
1283 {
1284         struct memblock_region *reg;
1285
1286         /* Map all the lowmem memory banks. */
1287         for_each_memblock(memory, reg) {
1288                 phys_addr_t start = reg->base;
1289                 phys_addr_t end = start + reg->size;
1290                 struct map_desc map;
1291
1292                 if (end > arm_lowmem_limit)
1293                         end = arm_lowmem_limit;
1294                 if (start >= end)
1295                         break;
1296
1297                 map.pfn = __phys_to_pfn(start);
1298                 map.virtual = __phys_to_virt(start);
1299                 map.length = end - start;
1300                 map.type = MT_MEMORY;
1301
1302                 create_mapping(&map);
1303         }
1304 }
1305
1306 /*
1307  * paging_init() sets up the page tables, initialises the zone memory
1308  * maps, and sets up the zero page, bad page and bad page tables.
1309  */
1310 void __init paging_init(struct machine_desc *mdesc)
1311 {
1312         void *zero_page;
1313
1314         memblock_set_current_limit(arm_lowmem_limit);
1315
1316         build_mem_type_table();
1317         prepare_page_table();
1318         map_lowmem();
1319         dma_contiguous_remap();
1320         devicemaps_init(mdesc);
1321         kmap_init();
1322         tcm_init();
1323
1324         top_pmd = pmd_off_k(0xffff0000);
1325
1326         /* allocate the zero page. */
1327         zero_page = early_alloc(PAGE_SIZE);
1328
1329         bootmem_init();
1330
1331         empty_zero_page = virt_to_page(zero_page);
1332         __flush_dcache_page(NULL, empty_zero_page);
1333 }