Merge tag 'pci-v3.14-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[firefly-linux-kernel-4.4.55.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68         BUG_ON(preemptible());
69         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
70 }
71
72 /**
73  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74  * Must be called from non-preemptible context
75  */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78         BUG_ON(preemptible());
79         return __this_cpu_read(kvm_arm_running_vcpu);
80 }
81
82 /**
83  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84  */
85 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
86 {
87         return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void *garbage)
91 {
92         return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 void kvm_arch_hardware_disable(void *garbage)
101 {
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106         return 0;
107 }
108
109 void kvm_arch_hardware_unsetup(void)
110 {
111 }
112
113 void kvm_arch_check_processor_compat(void *rtn)
114 {
115         *(int *)rtn = 0;
116 }
117
118 void kvm_arch_sync_events(struct kvm *kvm)
119 {
120 }
121
122 /**
123  * kvm_arch_init_vm - initializes a VM data structure
124  * @kvm:        pointer to the KVM struct
125  */
126 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
127 {
128         int ret = 0;
129
130         if (type)
131                 return -EINVAL;
132
133         ret = kvm_alloc_stage2_pgd(kvm);
134         if (ret)
135                 goto out_fail_alloc;
136
137         ret = create_hyp_mappings(kvm, kvm + 1);
138         if (ret)
139                 goto out_free_stage2_pgd;
140
141         /* Mark the initial VMID generation invalid */
142         kvm->arch.vmid_gen = 0;
143
144         return ret;
145 out_free_stage2_pgd:
146         kvm_free_stage2_pgd(kvm);
147 out_fail_alloc:
148         return ret;
149 }
150
151 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
152 {
153         return VM_FAULT_SIGBUS;
154 }
155
156 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
157                            struct kvm_memory_slot *dont)
158 {
159 }
160
161 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
162                             unsigned long npages)
163 {
164         return 0;
165 }
166
167 /**
168  * kvm_arch_destroy_vm - destroy the VM data structure
169  * @kvm:        pointer to the KVM struct
170  */
171 void kvm_arch_destroy_vm(struct kvm *kvm)
172 {
173         int i;
174
175         kvm_free_stage2_pgd(kvm);
176
177         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
178                 if (kvm->vcpus[i]) {
179                         kvm_arch_vcpu_free(kvm->vcpus[i]);
180                         kvm->vcpus[i] = NULL;
181                 }
182         }
183 }
184
185 int kvm_dev_ioctl_check_extension(long ext)
186 {
187         int r;
188         switch (ext) {
189         case KVM_CAP_IRQCHIP:
190                 r = vgic_present;
191                 break;
192         case KVM_CAP_USER_MEMORY:
193         case KVM_CAP_SYNC_MMU:
194         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
195         case KVM_CAP_ONE_REG:
196         case KVM_CAP_ARM_PSCI:
197                 r = 1;
198                 break;
199         case KVM_CAP_COALESCED_MMIO:
200                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
201                 break;
202         case KVM_CAP_ARM_SET_DEVICE_ADDR:
203                 r = 1;
204                 break;
205         case KVM_CAP_NR_VCPUS:
206                 r = num_online_cpus();
207                 break;
208         case KVM_CAP_MAX_VCPUS:
209                 r = KVM_MAX_VCPUS;
210                 break;
211         default:
212                 r = kvm_arch_dev_ioctl_check_extension(ext);
213                 break;
214         }
215         return r;
216 }
217
218 long kvm_arch_dev_ioctl(struct file *filp,
219                         unsigned int ioctl, unsigned long arg)
220 {
221         return -EINVAL;
222 }
223
224 void kvm_arch_memslots_updated(struct kvm *kvm)
225 {
226 }
227
228 int kvm_arch_prepare_memory_region(struct kvm *kvm,
229                                    struct kvm_memory_slot *memslot,
230                                    struct kvm_userspace_memory_region *mem,
231                                    enum kvm_mr_change change)
232 {
233         return 0;
234 }
235
236 void kvm_arch_commit_memory_region(struct kvm *kvm,
237                                    struct kvm_userspace_memory_region *mem,
238                                    const struct kvm_memory_slot *old,
239                                    enum kvm_mr_change change)
240 {
241 }
242
243 void kvm_arch_flush_shadow_all(struct kvm *kvm)
244 {
245 }
246
247 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
248                                    struct kvm_memory_slot *slot)
249 {
250 }
251
252 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
253 {
254         int err;
255         struct kvm_vcpu *vcpu;
256
257         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
258         if (!vcpu) {
259                 err = -ENOMEM;
260                 goto out;
261         }
262
263         err = kvm_vcpu_init(vcpu, kvm, id);
264         if (err)
265                 goto free_vcpu;
266
267         err = create_hyp_mappings(vcpu, vcpu + 1);
268         if (err)
269                 goto vcpu_uninit;
270
271         return vcpu;
272 vcpu_uninit:
273         kvm_vcpu_uninit(vcpu);
274 free_vcpu:
275         kmem_cache_free(kvm_vcpu_cache, vcpu);
276 out:
277         return ERR_PTR(err);
278 }
279
280 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
281 {
282         return 0;
283 }
284
285 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
286 {
287         kvm_mmu_free_memory_caches(vcpu);
288         kvm_timer_vcpu_terminate(vcpu);
289         kmem_cache_free(kvm_vcpu_cache, vcpu);
290 }
291
292 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
293 {
294         kvm_arch_vcpu_free(vcpu);
295 }
296
297 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
298 {
299         return 0;
300 }
301
302 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
303 {
304         int ret;
305
306         /* Force users to call KVM_ARM_VCPU_INIT */
307         vcpu->arch.target = -1;
308
309         /* Set up VGIC */
310         ret = kvm_vgic_vcpu_init(vcpu);
311         if (ret)
312                 return ret;
313
314         /* Set up the timer */
315         kvm_timer_vcpu_init(vcpu);
316
317         return 0;
318 }
319
320 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
321 {
322 }
323
324 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
325 {
326         vcpu->cpu = cpu;
327         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
328
329         /*
330          * Check whether this vcpu requires the cache to be flushed on
331          * this physical CPU. This is a consequence of doing dcache
332          * operations by set/way on this vcpu. We do it here to be in
333          * a non-preemptible section.
334          */
335         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
336                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
337
338         kvm_arm_set_running_vcpu(vcpu);
339 }
340
341 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
342 {
343         kvm_arm_set_running_vcpu(NULL);
344 }
345
346 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
347                                         struct kvm_guest_debug *dbg)
348 {
349         return -EINVAL;
350 }
351
352
353 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
354                                     struct kvm_mp_state *mp_state)
355 {
356         return -EINVAL;
357 }
358
359 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
360                                     struct kvm_mp_state *mp_state)
361 {
362         return -EINVAL;
363 }
364
365 /**
366  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
367  * @v:          The VCPU pointer
368  *
369  * If the guest CPU is not waiting for interrupts or an interrupt line is
370  * asserted, the CPU is by definition runnable.
371  */
372 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
373 {
374         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
375 }
376
377 /* Just ensure a guest exit from a particular CPU */
378 static void exit_vm_noop(void *info)
379 {
380 }
381
382 void force_vm_exit(const cpumask_t *mask)
383 {
384         smp_call_function_many(mask, exit_vm_noop, NULL, true);
385 }
386
387 /**
388  * need_new_vmid_gen - check that the VMID is still valid
389  * @kvm: The VM's VMID to checkt
390  *
391  * return true if there is a new generation of VMIDs being used
392  *
393  * The hardware supports only 256 values with the value zero reserved for the
394  * host, so we check if an assigned value belongs to a previous generation,
395  * which which requires us to assign a new value. If we're the first to use a
396  * VMID for the new generation, we must flush necessary caches and TLBs on all
397  * CPUs.
398  */
399 static bool need_new_vmid_gen(struct kvm *kvm)
400 {
401         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
402 }
403
404 /**
405  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
406  * @kvm The guest that we are about to run
407  *
408  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
409  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
410  * caches and TLBs.
411  */
412 static void update_vttbr(struct kvm *kvm)
413 {
414         phys_addr_t pgd_phys;
415         u64 vmid;
416
417         if (!need_new_vmid_gen(kvm))
418                 return;
419
420         spin_lock(&kvm_vmid_lock);
421
422         /*
423          * We need to re-check the vmid_gen here to ensure that if another vcpu
424          * already allocated a valid vmid for this vm, then this vcpu should
425          * use the same vmid.
426          */
427         if (!need_new_vmid_gen(kvm)) {
428                 spin_unlock(&kvm_vmid_lock);
429                 return;
430         }
431
432         /* First user of a new VMID generation? */
433         if (unlikely(kvm_next_vmid == 0)) {
434                 atomic64_inc(&kvm_vmid_gen);
435                 kvm_next_vmid = 1;
436
437                 /*
438                  * On SMP we know no other CPUs can use this CPU's or each
439                  * other's VMID after force_vm_exit returns since the
440                  * kvm_vmid_lock blocks them from reentry to the guest.
441                  */
442                 force_vm_exit(cpu_all_mask);
443                 /*
444                  * Now broadcast TLB + ICACHE invalidation over the inner
445                  * shareable domain to make sure all data structures are
446                  * clean.
447                  */
448                 kvm_call_hyp(__kvm_flush_vm_context);
449         }
450
451         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
452         kvm->arch.vmid = kvm_next_vmid;
453         kvm_next_vmid++;
454
455         /* update vttbr to be used with the new vmid */
456         pgd_phys = virt_to_phys(kvm->arch.pgd);
457         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
458         kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
459         kvm->arch.vttbr |= vmid;
460
461         spin_unlock(&kvm_vmid_lock);
462 }
463
464 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
465 {
466         if (likely(vcpu->arch.has_run_once))
467                 return 0;
468
469         vcpu->arch.has_run_once = true;
470
471         /*
472          * Initialize the VGIC before running a vcpu the first time on
473          * this VM.
474          */
475         if (irqchip_in_kernel(vcpu->kvm) &&
476             unlikely(!vgic_initialized(vcpu->kvm))) {
477                 int ret = kvm_vgic_init(vcpu->kvm);
478                 if (ret)
479                         return ret;
480         }
481
482         /*
483          * Handle the "start in power-off" case by calling into the
484          * PSCI code.
485          */
486         if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
487                 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
488                 kvm_psci_call(vcpu);
489         }
490
491         return 0;
492 }
493
494 static void vcpu_pause(struct kvm_vcpu *vcpu)
495 {
496         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
497
498         wait_event_interruptible(*wq, !vcpu->arch.pause);
499 }
500
501 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
502 {
503         return vcpu->arch.target >= 0;
504 }
505
506 /**
507  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
508  * @vcpu:       The VCPU pointer
509  * @run:        The kvm_run structure pointer used for userspace state exchange
510  *
511  * This function is called through the VCPU_RUN ioctl called from user space. It
512  * will execute VM code in a loop until the time slice for the process is used
513  * or some emulation is needed from user space in which case the function will
514  * return with return value 0 and with the kvm_run structure filled in with the
515  * required data for the requested emulation.
516  */
517 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
518 {
519         int ret;
520         sigset_t sigsaved;
521
522         if (unlikely(!kvm_vcpu_initialized(vcpu)))
523                 return -ENOEXEC;
524
525         ret = kvm_vcpu_first_run_init(vcpu);
526         if (ret)
527                 return ret;
528
529         if (run->exit_reason == KVM_EXIT_MMIO) {
530                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
531                 if (ret)
532                         return ret;
533         }
534
535         if (vcpu->sigset_active)
536                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
537
538         ret = 1;
539         run->exit_reason = KVM_EXIT_UNKNOWN;
540         while (ret > 0) {
541                 /*
542                  * Check conditions before entering the guest
543                  */
544                 cond_resched();
545
546                 update_vttbr(vcpu->kvm);
547
548                 if (vcpu->arch.pause)
549                         vcpu_pause(vcpu);
550
551                 kvm_vgic_flush_hwstate(vcpu);
552                 kvm_timer_flush_hwstate(vcpu);
553
554                 local_irq_disable();
555
556                 /*
557                  * Re-check atomic conditions
558                  */
559                 if (signal_pending(current)) {
560                         ret = -EINTR;
561                         run->exit_reason = KVM_EXIT_INTR;
562                 }
563
564                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
565                         local_irq_enable();
566                         kvm_timer_sync_hwstate(vcpu);
567                         kvm_vgic_sync_hwstate(vcpu);
568                         continue;
569                 }
570
571                 /**************************************************************
572                  * Enter the guest
573                  */
574                 trace_kvm_entry(*vcpu_pc(vcpu));
575                 kvm_guest_enter();
576                 vcpu->mode = IN_GUEST_MODE;
577
578                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
579
580                 vcpu->mode = OUTSIDE_GUEST_MODE;
581                 vcpu->arch.last_pcpu = smp_processor_id();
582                 kvm_guest_exit();
583                 trace_kvm_exit(*vcpu_pc(vcpu));
584                 /*
585                  * We may have taken a host interrupt in HYP mode (ie
586                  * while executing the guest). This interrupt is still
587                  * pending, as we haven't serviced it yet!
588                  *
589                  * We're now back in SVC mode, with interrupts
590                  * disabled.  Enabling the interrupts now will have
591                  * the effect of taking the interrupt again, in SVC
592                  * mode this time.
593                  */
594                 local_irq_enable();
595
596                 /*
597                  * Back from guest
598                  *************************************************************/
599
600                 kvm_timer_sync_hwstate(vcpu);
601                 kvm_vgic_sync_hwstate(vcpu);
602
603                 ret = handle_exit(vcpu, run, ret);
604         }
605
606         if (vcpu->sigset_active)
607                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
608         return ret;
609 }
610
611 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
612 {
613         int bit_index;
614         bool set;
615         unsigned long *ptr;
616
617         if (number == KVM_ARM_IRQ_CPU_IRQ)
618                 bit_index = __ffs(HCR_VI);
619         else /* KVM_ARM_IRQ_CPU_FIQ */
620                 bit_index = __ffs(HCR_VF);
621
622         ptr = (unsigned long *)&vcpu->arch.irq_lines;
623         if (level)
624                 set = test_and_set_bit(bit_index, ptr);
625         else
626                 set = test_and_clear_bit(bit_index, ptr);
627
628         /*
629          * If we didn't change anything, no need to wake up or kick other CPUs
630          */
631         if (set == level)
632                 return 0;
633
634         /*
635          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
636          * trigger a world-switch round on the running physical CPU to set the
637          * virtual IRQ/FIQ fields in the HCR appropriately.
638          */
639         kvm_vcpu_kick(vcpu);
640
641         return 0;
642 }
643
644 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
645                           bool line_status)
646 {
647         u32 irq = irq_level->irq;
648         unsigned int irq_type, vcpu_idx, irq_num;
649         int nrcpus = atomic_read(&kvm->online_vcpus);
650         struct kvm_vcpu *vcpu = NULL;
651         bool level = irq_level->level;
652
653         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
654         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
655         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
656
657         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
658
659         switch (irq_type) {
660         case KVM_ARM_IRQ_TYPE_CPU:
661                 if (irqchip_in_kernel(kvm))
662                         return -ENXIO;
663
664                 if (vcpu_idx >= nrcpus)
665                         return -EINVAL;
666
667                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
668                 if (!vcpu)
669                         return -EINVAL;
670
671                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
672                         return -EINVAL;
673
674                 return vcpu_interrupt_line(vcpu, irq_num, level);
675         case KVM_ARM_IRQ_TYPE_PPI:
676                 if (!irqchip_in_kernel(kvm))
677                         return -ENXIO;
678
679                 if (vcpu_idx >= nrcpus)
680                         return -EINVAL;
681
682                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
683                 if (!vcpu)
684                         return -EINVAL;
685
686                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
687                         return -EINVAL;
688
689                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
690         case KVM_ARM_IRQ_TYPE_SPI:
691                 if (!irqchip_in_kernel(kvm))
692                         return -ENXIO;
693
694                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
695                     irq_num > KVM_ARM_IRQ_GIC_MAX)
696                         return -EINVAL;
697
698                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
699         }
700
701         return -EINVAL;
702 }
703
704 long kvm_arch_vcpu_ioctl(struct file *filp,
705                          unsigned int ioctl, unsigned long arg)
706 {
707         struct kvm_vcpu *vcpu = filp->private_data;
708         void __user *argp = (void __user *)arg;
709
710         switch (ioctl) {
711         case KVM_ARM_VCPU_INIT: {
712                 struct kvm_vcpu_init init;
713
714                 if (copy_from_user(&init, argp, sizeof(init)))
715                         return -EFAULT;
716
717                 return kvm_vcpu_set_target(vcpu, &init);
718
719         }
720         case KVM_SET_ONE_REG:
721         case KVM_GET_ONE_REG: {
722                 struct kvm_one_reg reg;
723
724                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
725                         return -ENOEXEC;
726
727                 if (copy_from_user(&reg, argp, sizeof(reg)))
728                         return -EFAULT;
729                 if (ioctl == KVM_SET_ONE_REG)
730                         return kvm_arm_set_reg(vcpu, &reg);
731                 else
732                         return kvm_arm_get_reg(vcpu, &reg);
733         }
734         case KVM_GET_REG_LIST: {
735                 struct kvm_reg_list __user *user_list = argp;
736                 struct kvm_reg_list reg_list;
737                 unsigned n;
738
739                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
740                         return -ENOEXEC;
741
742                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
743                         return -EFAULT;
744                 n = reg_list.n;
745                 reg_list.n = kvm_arm_num_regs(vcpu);
746                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
747                         return -EFAULT;
748                 if (n < reg_list.n)
749                         return -E2BIG;
750                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
751         }
752         default:
753                 return -EINVAL;
754         }
755 }
756
757 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
758 {
759         return -EINVAL;
760 }
761
762 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
763                                         struct kvm_arm_device_addr *dev_addr)
764 {
765         unsigned long dev_id, type;
766
767         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
768                 KVM_ARM_DEVICE_ID_SHIFT;
769         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
770                 KVM_ARM_DEVICE_TYPE_SHIFT;
771
772         switch (dev_id) {
773         case KVM_ARM_DEVICE_VGIC_V2:
774                 if (!vgic_present)
775                         return -ENXIO;
776                 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
777         default:
778                 return -ENODEV;
779         }
780 }
781
782 long kvm_arch_vm_ioctl(struct file *filp,
783                        unsigned int ioctl, unsigned long arg)
784 {
785         struct kvm *kvm = filp->private_data;
786         void __user *argp = (void __user *)arg;
787
788         switch (ioctl) {
789         case KVM_CREATE_IRQCHIP: {
790                 if (vgic_present)
791                         return kvm_vgic_create(kvm);
792                 else
793                         return -ENXIO;
794         }
795         case KVM_ARM_SET_DEVICE_ADDR: {
796                 struct kvm_arm_device_addr dev_addr;
797
798                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
799                         return -EFAULT;
800                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
801         }
802         case KVM_ARM_PREFERRED_TARGET: {
803                 int err;
804                 struct kvm_vcpu_init init;
805
806                 err = kvm_vcpu_preferred_target(&init);
807                 if (err)
808                         return err;
809
810                 if (copy_to_user(argp, &init, sizeof(init)))
811                         return -EFAULT;
812
813                 return 0;
814         }
815         default:
816                 return -EINVAL;
817         }
818 }
819
820 static void cpu_init_hyp_mode(void *dummy)
821 {
822         phys_addr_t boot_pgd_ptr;
823         phys_addr_t pgd_ptr;
824         unsigned long hyp_stack_ptr;
825         unsigned long stack_page;
826         unsigned long vector_ptr;
827
828         /* Switch from the HYP stub to our own HYP init vector */
829         __hyp_set_vectors(kvm_get_idmap_vector());
830
831         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
832         pgd_ptr = kvm_mmu_get_httbr();
833         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
834         hyp_stack_ptr = stack_page + PAGE_SIZE;
835         vector_ptr = (unsigned long)__kvm_hyp_vector;
836
837         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
838 }
839
840 static int hyp_init_cpu_notify(struct notifier_block *self,
841                                unsigned long action, void *cpu)
842 {
843         switch (action) {
844         case CPU_STARTING:
845         case CPU_STARTING_FROZEN:
846                 cpu_init_hyp_mode(NULL);
847                 break;
848         }
849
850         return NOTIFY_OK;
851 }
852
853 static struct notifier_block hyp_init_cpu_nb = {
854         .notifier_call = hyp_init_cpu_notify,
855 };
856
857 #ifdef CONFIG_CPU_PM
858 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
859                                     unsigned long cmd,
860                                     void *v)
861 {
862         if (cmd == CPU_PM_EXIT) {
863                 cpu_init_hyp_mode(NULL);
864                 return NOTIFY_OK;
865         }
866
867         return NOTIFY_DONE;
868 }
869
870 static struct notifier_block hyp_init_cpu_pm_nb = {
871         .notifier_call = hyp_init_cpu_pm_notifier,
872 };
873
874 static void __init hyp_cpu_pm_init(void)
875 {
876         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
877 }
878 #else
879 static inline void hyp_cpu_pm_init(void)
880 {
881 }
882 #endif
883
884 /**
885  * Inits Hyp-mode on all online CPUs
886  */
887 static int init_hyp_mode(void)
888 {
889         int cpu;
890         int err = 0;
891
892         /*
893          * Allocate Hyp PGD and setup Hyp identity mapping
894          */
895         err = kvm_mmu_init();
896         if (err)
897                 goto out_err;
898
899         /*
900          * It is probably enough to obtain the default on one
901          * CPU. It's unlikely to be different on the others.
902          */
903         hyp_default_vectors = __hyp_get_vectors();
904
905         /*
906          * Allocate stack pages for Hypervisor-mode
907          */
908         for_each_possible_cpu(cpu) {
909                 unsigned long stack_page;
910
911                 stack_page = __get_free_page(GFP_KERNEL);
912                 if (!stack_page) {
913                         err = -ENOMEM;
914                         goto out_free_stack_pages;
915                 }
916
917                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
918         }
919
920         /*
921          * Map the Hyp-code called directly from the host
922          */
923         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
924         if (err) {
925                 kvm_err("Cannot map world-switch code\n");
926                 goto out_free_mappings;
927         }
928
929         /*
930          * Map the Hyp stack pages
931          */
932         for_each_possible_cpu(cpu) {
933                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
934                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
935
936                 if (err) {
937                         kvm_err("Cannot map hyp stack\n");
938                         goto out_free_mappings;
939                 }
940         }
941
942         /*
943          * Map the host CPU structures
944          */
945         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
946         if (!kvm_host_cpu_state) {
947                 err = -ENOMEM;
948                 kvm_err("Cannot allocate host CPU state\n");
949                 goto out_free_mappings;
950         }
951
952         for_each_possible_cpu(cpu) {
953                 kvm_cpu_context_t *cpu_ctxt;
954
955                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
956                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
957
958                 if (err) {
959                         kvm_err("Cannot map host CPU state: %d\n", err);
960                         goto out_free_context;
961                 }
962         }
963
964         /*
965          * Execute the init code on each CPU.
966          */
967         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
968
969         /*
970          * Init HYP view of VGIC
971          */
972         err = kvm_vgic_hyp_init();
973         if (err)
974                 goto out_free_context;
975
976 #ifdef CONFIG_KVM_ARM_VGIC
977                 vgic_present = true;
978 #endif
979
980         /*
981          * Init HYP architected timer support
982          */
983         err = kvm_timer_hyp_init();
984         if (err)
985                 goto out_free_mappings;
986
987 #ifndef CONFIG_HOTPLUG_CPU
988         free_boot_hyp_pgd();
989 #endif
990
991         kvm_perf_init();
992
993         kvm_info("Hyp mode initialized successfully\n");
994
995         return 0;
996 out_free_context:
997         free_percpu(kvm_host_cpu_state);
998 out_free_mappings:
999         free_hyp_pgds();
1000 out_free_stack_pages:
1001         for_each_possible_cpu(cpu)
1002                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1003 out_err:
1004         kvm_err("error initializing Hyp mode: %d\n", err);
1005         return err;
1006 }
1007
1008 static void check_kvm_target_cpu(void *ret)
1009 {
1010         *(int *)ret = kvm_target_cpu();
1011 }
1012
1013 /**
1014  * Initialize Hyp-mode and memory mappings on all CPUs.
1015  */
1016 int kvm_arch_init(void *opaque)
1017 {
1018         int err;
1019         int ret, cpu;
1020
1021         if (!is_hyp_mode_available()) {
1022                 kvm_err("HYP mode not available\n");
1023                 return -ENODEV;
1024         }
1025
1026         for_each_online_cpu(cpu) {
1027                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1028                 if (ret < 0) {
1029                         kvm_err("Error, CPU %d not supported!\n", cpu);
1030                         return -ENODEV;
1031                 }
1032         }
1033
1034         err = init_hyp_mode();
1035         if (err)
1036                 goto out_err;
1037
1038         err = register_cpu_notifier(&hyp_init_cpu_nb);
1039         if (err) {
1040                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1041                 goto out_err;
1042         }
1043
1044         hyp_cpu_pm_init();
1045
1046         kvm_coproc_table_init();
1047         return 0;
1048 out_err:
1049         return err;
1050 }
1051
1052 /* NOP: Compiling as a module not supported */
1053 void kvm_arch_exit(void)
1054 {
1055         kvm_perf_teardown();
1056 }
1057
1058 static int arm_init(void)
1059 {
1060         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1061         return rc;
1062 }
1063
1064 module_init(arm_init);