f1bf41890fca45c78402acae5fa82839501d46e7
[firefly-linux-kernel-4.4.55.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
65 {
66         BUG_ON(preemptible());
67         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
68 }
69
70 /**
71  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
72  * Must be called from non-preemptible context
73  */
74 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
75 {
76         BUG_ON(preemptible());
77         return __this_cpu_read(kvm_arm_running_vcpu);
78 }
79
80 /**
81  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
82  */
83 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
84 {
85         return &kvm_arm_running_vcpu;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90         return 0;
91 }
92
93 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
94 {
95         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
96 }
97
98 int kvm_arch_hardware_setup(void)
99 {
100         return 0;
101 }
102
103 void kvm_arch_check_processor_compat(void *rtn)
104 {
105         *(int *)rtn = 0;
106 }
107
108
109 /**
110  * kvm_arch_init_vm - initializes a VM data structure
111  * @kvm:        pointer to the KVM struct
112  */
113 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
114 {
115         int ret = 0;
116
117         if (type)
118                 return -EINVAL;
119
120         ret = kvm_alloc_stage2_pgd(kvm);
121         if (ret)
122                 goto out_fail_alloc;
123
124         ret = create_hyp_mappings(kvm, kvm + 1);
125         if (ret)
126                 goto out_free_stage2_pgd;
127
128         kvm_timer_init(kvm);
129
130         /* Mark the initial VMID generation invalid */
131         kvm->arch.vmid_gen = 0;
132
133         /* The maximum number of VCPUs is limited by the host's GIC model */
134         kvm->arch.max_vcpus = kvm_vgic_get_max_vcpus();
135
136         return ret;
137 out_free_stage2_pgd:
138         kvm_free_stage2_pgd(kvm);
139 out_fail_alloc:
140         return ret;
141 }
142
143 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
144 {
145         return VM_FAULT_SIGBUS;
146 }
147
148
149 /**
150  * kvm_arch_destroy_vm - destroy the VM data structure
151  * @kvm:        pointer to the KVM struct
152  */
153 void kvm_arch_destroy_vm(struct kvm *kvm)
154 {
155         int i;
156
157         kvm_free_stage2_pgd(kvm);
158
159         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
160                 if (kvm->vcpus[i]) {
161                         kvm_arch_vcpu_free(kvm->vcpus[i]);
162                         kvm->vcpus[i] = NULL;
163                 }
164         }
165
166         kvm_vgic_destroy(kvm);
167 }
168
169 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
170 {
171         int r;
172         switch (ext) {
173         case KVM_CAP_IRQCHIP:
174         case KVM_CAP_IOEVENTFD:
175         case KVM_CAP_DEVICE_CTRL:
176         case KVM_CAP_USER_MEMORY:
177         case KVM_CAP_SYNC_MMU:
178         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
179         case KVM_CAP_ONE_REG:
180         case KVM_CAP_ARM_PSCI:
181         case KVM_CAP_ARM_PSCI_0_2:
182         case KVM_CAP_READONLY_MEM:
183         case KVM_CAP_MP_STATE:
184                 r = 1;
185                 break;
186         case KVM_CAP_COALESCED_MMIO:
187                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
188                 break;
189         case KVM_CAP_ARM_SET_DEVICE_ADDR:
190                 r = 1;
191                 break;
192         case KVM_CAP_NR_VCPUS:
193                 r = num_online_cpus();
194                 break;
195         case KVM_CAP_MAX_VCPUS:
196                 r = KVM_MAX_VCPUS;
197                 break;
198         default:
199                 r = kvm_arch_dev_ioctl_check_extension(ext);
200                 break;
201         }
202         return r;
203 }
204
205 long kvm_arch_dev_ioctl(struct file *filp,
206                         unsigned int ioctl, unsigned long arg)
207 {
208         return -EINVAL;
209 }
210
211
212 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
213 {
214         int err;
215         struct kvm_vcpu *vcpu;
216
217         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
218                 err = -EBUSY;
219                 goto out;
220         }
221
222         if (id >= kvm->arch.max_vcpus) {
223                 err = -EINVAL;
224                 goto out;
225         }
226
227         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
228         if (!vcpu) {
229                 err = -ENOMEM;
230                 goto out;
231         }
232
233         err = kvm_vcpu_init(vcpu, kvm, id);
234         if (err)
235                 goto free_vcpu;
236
237         err = create_hyp_mappings(vcpu, vcpu + 1);
238         if (err)
239                 goto vcpu_uninit;
240
241         return vcpu;
242 vcpu_uninit:
243         kvm_vcpu_uninit(vcpu);
244 free_vcpu:
245         kmem_cache_free(kvm_vcpu_cache, vcpu);
246 out:
247         return ERR_PTR(err);
248 }
249
250 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
251 {
252 }
253
254 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
255 {
256         kvm_mmu_free_memory_caches(vcpu);
257         kvm_timer_vcpu_terminate(vcpu);
258         kvm_vgic_vcpu_destroy(vcpu);
259         kmem_cache_free(kvm_vcpu_cache, vcpu);
260 }
261
262 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
263 {
264         kvm_arch_vcpu_free(vcpu);
265 }
266
267 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
268 {
269         return kvm_timer_should_fire(vcpu);
270 }
271
272 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
273 {
274         /* Force users to call KVM_ARM_VCPU_INIT */
275         vcpu->arch.target = -1;
276         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
277
278         /* Set up the timer */
279         kvm_timer_vcpu_init(vcpu);
280
281         kvm_arm_reset_debug_ptr(vcpu);
282
283         return 0;
284 }
285
286 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
287 {
288         vcpu->cpu = cpu;
289         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
290
291         kvm_arm_set_running_vcpu(vcpu);
292 }
293
294 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
295 {
296         /*
297          * The arch-generic KVM code expects the cpu field of a vcpu to be -1
298          * if the vcpu is no longer assigned to a cpu.  This is used for the
299          * optimized make_all_cpus_request path.
300          */
301         vcpu->cpu = -1;
302
303         kvm_arm_set_running_vcpu(NULL);
304 }
305
306 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
307                                     struct kvm_mp_state *mp_state)
308 {
309         if (vcpu->arch.pause)
310                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
311         else
312                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
313
314         return 0;
315 }
316
317 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
318                                     struct kvm_mp_state *mp_state)
319 {
320         switch (mp_state->mp_state) {
321         case KVM_MP_STATE_RUNNABLE:
322                 vcpu->arch.pause = false;
323                 break;
324         case KVM_MP_STATE_STOPPED:
325                 vcpu->arch.pause = true;
326                 break;
327         default:
328                 return -EINVAL;
329         }
330
331         return 0;
332 }
333
334 /**
335  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
336  * @v:          The VCPU pointer
337  *
338  * If the guest CPU is not waiting for interrupts or an interrupt line is
339  * asserted, the CPU is by definition runnable.
340  */
341 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
342 {
343         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
344 }
345
346 /* Just ensure a guest exit from a particular CPU */
347 static void exit_vm_noop(void *info)
348 {
349 }
350
351 void force_vm_exit(const cpumask_t *mask)
352 {
353         smp_call_function_many(mask, exit_vm_noop, NULL, true);
354 }
355
356 /**
357  * need_new_vmid_gen - check that the VMID is still valid
358  * @kvm: The VM's VMID to checkt
359  *
360  * return true if there is a new generation of VMIDs being used
361  *
362  * The hardware supports only 256 values with the value zero reserved for the
363  * host, so we check if an assigned value belongs to a previous generation,
364  * which which requires us to assign a new value. If we're the first to use a
365  * VMID for the new generation, we must flush necessary caches and TLBs on all
366  * CPUs.
367  */
368 static bool need_new_vmid_gen(struct kvm *kvm)
369 {
370         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
371 }
372
373 /**
374  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
375  * @kvm The guest that we are about to run
376  *
377  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
378  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
379  * caches and TLBs.
380  */
381 static void update_vttbr(struct kvm *kvm)
382 {
383         phys_addr_t pgd_phys;
384         u64 vmid;
385
386         if (!need_new_vmid_gen(kvm))
387                 return;
388
389         spin_lock(&kvm_vmid_lock);
390
391         /*
392          * We need to re-check the vmid_gen here to ensure that if another vcpu
393          * already allocated a valid vmid for this vm, then this vcpu should
394          * use the same vmid.
395          */
396         if (!need_new_vmid_gen(kvm)) {
397                 spin_unlock(&kvm_vmid_lock);
398                 return;
399         }
400
401         /* First user of a new VMID generation? */
402         if (unlikely(kvm_next_vmid == 0)) {
403                 atomic64_inc(&kvm_vmid_gen);
404                 kvm_next_vmid = 1;
405
406                 /*
407                  * On SMP we know no other CPUs can use this CPU's or each
408                  * other's VMID after force_vm_exit returns since the
409                  * kvm_vmid_lock blocks them from reentry to the guest.
410                  */
411                 force_vm_exit(cpu_all_mask);
412                 /*
413                  * Now broadcast TLB + ICACHE invalidation over the inner
414                  * shareable domain to make sure all data structures are
415                  * clean.
416                  */
417                 kvm_call_hyp(__kvm_flush_vm_context);
418         }
419
420         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
421         kvm->arch.vmid = kvm_next_vmid;
422         kvm_next_vmid++;
423
424         /* update vttbr to be used with the new vmid */
425         pgd_phys = virt_to_phys(kvm_get_hwpgd(kvm));
426         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
427         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
428         kvm->arch.vttbr = pgd_phys | vmid;
429
430         spin_unlock(&kvm_vmid_lock);
431 }
432
433 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
434 {
435         struct kvm *kvm = vcpu->kvm;
436         int ret;
437
438         if (likely(vcpu->arch.has_run_once))
439                 return 0;
440
441         vcpu->arch.has_run_once = true;
442
443         /*
444          * Map the VGIC hardware resources before running a vcpu the first
445          * time on this VM.
446          */
447         if (unlikely(!vgic_ready(kvm))) {
448                 ret = kvm_vgic_map_resources(kvm);
449                 if (ret)
450                         return ret;
451         }
452
453         /*
454          * Enable the arch timers only if we have an in-kernel VGIC
455          * and it has been properly initialized, since we cannot handle
456          * interrupts from the virtual timer with a userspace gic.
457          */
458         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
459                 kvm_timer_enable(kvm);
460
461         return 0;
462 }
463
464 bool kvm_arch_intc_initialized(struct kvm *kvm)
465 {
466         return vgic_initialized(kvm);
467 }
468
469 static void vcpu_pause(struct kvm_vcpu *vcpu)
470 {
471         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
472
473         wait_event_interruptible(*wq, !vcpu->arch.pause);
474 }
475
476 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
477 {
478         return vcpu->arch.target >= 0;
479 }
480
481 /**
482  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
483  * @vcpu:       The VCPU pointer
484  * @run:        The kvm_run structure pointer used for userspace state exchange
485  *
486  * This function is called through the VCPU_RUN ioctl called from user space. It
487  * will execute VM code in a loop until the time slice for the process is used
488  * or some emulation is needed from user space in which case the function will
489  * return with return value 0 and with the kvm_run structure filled in with the
490  * required data for the requested emulation.
491  */
492 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
493 {
494         int ret;
495         sigset_t sigsaved;
496
497         if (unlikely(!kvm_vcpu_initialized(vcpu)))
498                 return -ENOEXEC;
499
500         ret = kvm_vcpu_first_run_init(vcpu);
501         if (ret)
502                 return ret;
503
504         if (run->exit_reason == KVM_EXIT_MMIO) {
505                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
506                 if (ret)
507                         return ret;
508         }
509
510         if (vcpu->sigset_active)
511                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
512
513         ret = 1;
514         run->exit_reason = KVM_EXIT_UNKNOWN;
515         while (ret > 0) {
516                 /*
517                  * Check conditions before entering the guest
518                  */
519                 cond_resched();
520
521                 update_vttbr(vcpu->kvm);
522
523                 if (vcpu->arch.pause)
524                         vcpu_pause(vcpu);
525
526                 /*
527                  * Disarming the background timer must be done in a
528                  * preemptible context, as this call may sleep.
529                  */
530                 kvm_timer_flush_hwstate(vcpu);
531
532                 /*
533                  * Preparing the interrupts to be injected also
534                  * involves poking the GIC, which must be done in a
535                  * non-preemptible context.
536                  */
537                 preempt_disable();
538                 kvm_vgic_flush_hwstate(vcpu);
539
540                 local_irq_disable();
541
542                 /*
543                  * Re-check atomic conditions
544                  */
545                 if (signal_pending(current)) {
546                         ret = -EINTR;
547                         run->exit_reason = KVM_EXIT_INTR;
548                 }
549
550                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
551                         local_irq_enable();
552                         kvm_vgic_sync_hwstate(vcpu);
553                         preempt_enable();
554                         kvm_timer_sync_hwstate(vcpu);
555                         continue;
556                 }
557
558                 kvm_arm_setup_debug(vcpu);
559
560                 /**************************************************************
561                  * Enter the guest
562                  */
563                 trace_kvm_entry(*vcpu_pc(vcpu));
564                 __kvm_guest_enter();
565                 vcpu->mode = IN_GUEST_MODE;
566
567                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
568
569                 vcpu->mode = OUTSIDE_GUEST_MODE;
570                 /*
571                  * Back from guest
572                  *************************************************************/
573
574                 kvm_arm_clear_debug(vcpu);
575
576                 /*
577                  * We may have taken a host interrupt in HYP mode (ie
578                  * while executing the guest). This interrupt is still
579                  * pending, as we haven't serviced it yet!
580                  *
581                  * We're now back in SVC mode, with interrupts
582                  * disabled.  Enabling the interrupts now will have
583                  * the effect of taking the interrupt again, in SVC
584                  * mode this time.
585                  */
586                 local_irq_enable();
587
588                 /*
589                  * We do local_irq_enable() before calling kvm_guest_exit() so
590                  * that if a timer interrupt hits while running the guest we
591                  * account that tick as being spent in the guest.  We enable
592                  * preemption after calling kvm_guest_exit() so that if we get
593                  * preempted we make sure ticks after that is not counted as
594                  * guest time.
595                  */
596                 kvm_guest_exit();
597                 trace_kvm_exit(kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
598
599                 kvm_vgic_sync_hwstate(vcpu);
600
601                 preempt_enable();
602
603                 kvm_timer_sync_hwstate(vcpu);
604
605                 ret = handle_exit(vcpu, run, ret);
606         }
607
608         if (vcpu->sigset_active)
609                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
610         return ret;
611 }
612
613 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
614 {
615         int bit_index;
616         bool set;
617         unsigned long *ptr;
618
619         if (number == KVM_ARM_IRQ_CPU_IRQ)
620                 bit_index = __ffs(HCR_VI);
621         else /* KVM_ARM_IRQ_CPU_FIQ */
622                 bit_index = __ffs(HCR_VF);
623
624         ptr = (unsigned long *)&vcpu->arch.irq_lines;
625         if (level)
626                 set = test_and_set_bit(bit_index, ptr);
627         else
628                 set = test_and_clear_bit(bit_index, ptr);
629
630         /*
631          * If we didn't change anything, no need to wake up or kick other CPUs
632          */
633         if (set == level)
634                 return 0;
635
636         /*
637          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
638          * trigger a world-switch round on the running physical CPU to set the
639          * virtual IRQ/FIQ fields in the HCR appropriately.
640          */
641         kvm_vcpu_kick(vcpu);
642
643         return 0;
644 }
645
646 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
647                           bool line_status)
648 {
649         u32 irq = irq_level->irq;
650         unsigned int irq_type, vcpu_idx, irq_num;
651         int nrcpus = atomic_read(&kvm->online_vcpus);
652         struct kvm_vcpu *vcpu = NULL;
653         bool level = irq_level->level;
654
655         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
656         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
657         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
658
659         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
660
661         switch (irq_type) {
662         case KVM_ARM_IRQ_TYPE_CPU:
663                 if (irqchip_in_kernel(kvm))
664                         return -ENXIO;
665
666                 if (vcpu_idx >= nrcpus)
667                         return -EINVAL;
668
669                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
670                 if (!vcpu)
671                         return -EINVAL;
672
673                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
674                         return -EINVAL;
675
676                 return vcpu_interrupt_line(vcpu, irq_num, level);
677         case KVM_ARM_IRQ_TYPE_PPI:
678                 if (!irqchip_in_kernel(kvm))
679                         return -ENXIO;
680
681                 if (vcpu_idx >= nrcpus)
682                         return -EINVAL;
683
684                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
685                 if (!vcpu)
686                         return -EINVAL;
687
688                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
689                         return -EINVAL;
690
691                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
692         case KVM_ARM_IRQ_TYPE_SPI:
693                 if (!irqchip_in_kernel(kvm))
694                         return -ENXIO;
695
696                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
697                         return -EINVAL;
698
699                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
700         }
701
702         return -EINVAL;
703 }
704
705 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
706                                const struct kvm_vcpu_init *init)
707 {
708         unsigned int i;
709         int phys_target = kvm_target_cpu();
710
711         if (init->target != phys_target)
712                 return -EINVAL;
713
714         /*
715          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
716          * use the same target.
717          */
718         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
719                 return -EINVAL;
720
721         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
722         for (i = 0; i < sizeof(init->features) * 8; i++) {
723                 bool set = (init->features[i / 32] & (1 << (i % 32)));
724
725                 if (set && i >= KVM_VCPU_MAX_FEATURES)
726                         return -ENOENT;
727
728                 /*
729                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
730                  * use the same feature set.
731                  */
732                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
733                     test_bit(i, vcpu->arch.features) != set)
734                         return -EINVAL;
735
736                 if (set)
737                         set_bit(i, vcpu->arch.features);
738         }
739
740         vcpu->arch.target = phys_target;
741
742         /* Now we know what it is, we can reset it. */
743         return kvm_reset_vcpu(vcpu);
744 }
745
746
747 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
748                                          struct kvm_vcpu_init *init)
749 {
750         int ret;
751
752         ret = kvm_vcpu_set_target(vcpu, init);
753         if (ret)
754                 return ret;
755
756         /*
757          * Ensure a rebooted VM will fault in RAM pages and detect if the
758          * guest MMU is turned off and flush the caches as needed.
759          */
760         if (vcpu->arch.has_run_once)
761                 stage2_unmap_vm(vcpu->kvm);
762
763         vcpu_reset_hcr(vcpu);
764
765         /*
766          * Handle the "start in power-off" case by marking the VCPU as paused.
767          */
768         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
769                 vcpu->arch.pause = true;
770         else
771                 vcpu->arch.pause = false;
772
773         return 0;
774 }
775
776 long kvm_arch_vcpu_ioctl(struct file *filp,
777                          unsigned int ioctl, unsigned long arg)
778 {
779         struct kvm_vcpu *vcpu = filp->private_data;
780         void __user *argp = (void __user *)arg;
781
782         switch (ioctl) {
783         case KVM_ARM_VCPU_INIT: {
784                 struct kvm_vcpu_init init;
785
786                 if (copy_from_user(&init, argp, sizeof(init)))
787                         return -EFAULT;
788
789                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
790         }
791         case KVM_SET_ONE_REG:
792         case KVM_GET_ONE_REG: {
793                 struct kvm_one_reg reg;
794
795                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
796                         return -ENOEXEC;
797
798                 if (copy_from_user(&reg, argp, sizeof(reg)))
799                         return -EFAULT;
800                 if (ioctl == KVM_SET_ONE_REG)
801                         return kvm_arm_set_reg(vcpu, &reg);
802                 else
803                         return kvm_arm_get_reg(vcpu, &reg);
804         }
805         case KVM_GET_REG_LIST: {
806                 struct kvm_reg_list __user *user_list = argp;
807                 struct kvm_reg_list reg_list;
808                 unsigned n;
809
810                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
811                         return -ENOEXEC;
812
813                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
814                         return -EFAULT;
815                 n = reg_list.n;
816                 reg_list.n = kvm_arm_num_regs(vcpu);
817                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
818                         return -EFAULT;
819                 if (n < reg_list.n)
820                         return -E2BIG;
821                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
822         }
823         default:
824                 return -EINVAL;
825         }
826 }
827
828 /**
829  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
830  * @kvm: kvm instance
831  * @log: slot id and address to which we copy the log
832  *
833  * Steps 1-4 below provide general overview of dirty page logging. See
834  * kvm_get_dirty_log_protect() function description for additional details.
835  *
836  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
837  * always flush the TLB (step 4) even if previous step failed  and the dirty
838  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
839  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
840  * writes will be marked dirty for next log read.
841  *
842  *   1. Take a snapshot of the bit and clear it if needed.
843  *   2. Write protect the corresponding page.
844  *   3. Copy the snapshot to the userspace.
845  *   4. Flush TLB's if needed.
846  */
847 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
848 {
849         bool is_dirty = false;
850         int r;
851
852         mutex_lock(&kvm->slots_lock);
853
854         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
855
856         if (is_dirty)
857                 kvm_flush_remote_tlbs(kvm);
858
859         mutex_unlock(&kvm->slots_lock);
860         return r;
861 }
862
863 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
864                                         struct kvm_arm_device_addr *dev_addr)
865 {
866         unsigned long dev_id, type;
867
868         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
869                 KVM_ARM_DEVICE_ID_SHIFT;
870         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
871                 KVM_ARM_DEVICE_TYPE_SHIFT;
872
873         switch (dev_id) {
874         case KVM_ARM_DEVICE_VGIC_V2:
875                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
876         default:
877                 return -ENODEV;
878         }
879 }
880
881 long kvm_arch_vm_ioctl(struct file *filp,
882                        unsigned int ioctl, unsigned long arg)
883 {
884         struct kvm *kvm = filp->private_data;
885         void __user *argp = (void __user *)arg;
886
887         switch (ioctl) {
888         case KVM_CREATE_IRQCHIP: {
889                 return kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
890         }
891         case KVM_ARM_SET_DEVICE_ADDR: {
892                 struct kvm_arm_device_addr dev_addr;
893
894                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
895                         return -EFAULT;
896                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
897         }
898         case KVM_ARM_PREFERRED_TARGET: {
899                 int err;
900                 struct kvm_vcpu_init init;
901
902                 err = kvm_vcpu_preferred_target(&init);
903                 if (err)
904                         return err;
905
906                 if (copy_to_user(argp, &init, sizeof(init)))
907                         return -EFAULT;
908
909                 return 0;
910         }
911         default:
912                 return -EINVAL;
913         }
914 }
915
916 static void cpu_init_hyp_mode(void *dummy)
917 {
918         phys_addr_t boot_pgd_ptr;
919         phys_addr_t pgd_ptr;
920         unsigned long hyp_stack_ptr;
921         unsigned long stack_page;
922         unsigned long vector_ptr;
923
924         /* Switch from the HYP stub to our own HYP init vector */
925         __hyp_set_vectors(kvm_get_idmap_vector());
926
927         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
928         pgd_ptr = kvm_mmu_get_httbr();
929         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
930         hyp_stack_ptr = stack_page + PAGE_SIZE;
931         vector_ptr = (unsigned long)__kvm_hyp_vector;
932
933         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
934
935         kvm_arm_init_debug();
936 }
937
938 static int hyp_init_cpu_notify(struct notifier_block *self,
939                                unsigned long action, void *cpu)
940 {
941         switch (action) {
942         case CPU_STARTING:
943         case CPU_STARTING_FROZEN:
944                 if (__hyp_get_vectors() == hyp_default_vectors)
945                         cpu_init_hyp_mode(NULL);
946                 break;
947         }
948
949         return NOTIFY_OK;
950 }
951
952 static struct notifier_block hyp_init_cpu_nb = {
953         .notifier_call = hyp_init_cpu_notify,
954 };
955
956 #ifdef CONFIG_CPU_PM
957 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
958                                     unsigned long cmd,
959                                     void *v)
960 {
961         if (cmd == CPU_PM_EXIT &&
962             __hyp_get_vectors() == hyp_default_vectors) {
963                 cpu_init_hyp_mode(NULL);
964                 return NOTIFY_OK;
965         }
966
967         return NOTIFY_DONE;
968 }
969
970 static struct notifier_block hyp_init_cpu_pm_nb = {
971         .notifier_call = hyp_init_cpu_pm_notifier,
972 };
973
974 static void __init hyp_cpu_pm_init(void)
975 {
976         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
977 }
978 #else
979 static inline void hyp_cpu_pm_init(void)
980 {
981 }
982 #endif
983
984 /**
985  * Inits Hyp-mode on all online CPUs
986  */
987 static int init_hyp_mode(void)
988 {
989         int cpu;
990         int err = 0;
991
992         /*
993          * Allocate Hyp PGD and setup Hyp identity mapping
994          */
995         err = kvm_mmu_init();
996         if (err)
997                 goto out_err;
998
999         /*
1000          * It is probably enough to obtain the default on one
1001          * CPU. It's unlikely to be different on the others.
1002          */
1003         hyp_default_vectors = __hyp_get_vectors();
1004
1005         /*
1006          * Allocate stack pages for Hypervisor-mode
1007          */
1008         for_each_possible_cpu(cpu) {
1009                 unsigned long stack_page;
1010
1011                 stack_page = __get_free_page(GFP_KERNEL);
1012                 if (!stack_page) {
1013                         err = -ENOMEM;
1014                         goto out_free_stack_pages;
1015                 }
1016
1017                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1018         }
1019
1020         /*
1021          * Map the Hyp-code called directly from the host
1022          */
1023         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1024         if (err) {
1025                 kvm_err("Cannot map world-switch code\n");
1026                 goto out_free_mappings;
1027         }
1028
1029         /*
1030          * Map the Hyp stack pages
1031          */
1032         for_each_possible_cpu(cpu) {
1033                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1034                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1035
1036                 if (err) {
1037                         kvm_err("Cannot map hyp stack\n");
1038                         goto out_free_mappings;
1039                 }
1040         }
1041
1042         /*
1043          * Map the host CPU structures
1044          */
1045         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1046         if (!kvm_host_cpu_state) {
1047                 err = -ENOMEM;
1048                 kvm_err("Cannot allocate host CPU state\n");
1049                 goto out_free_mappings;
1050         }
1051
1052         for_each_possible_cpu(cpu) {
1053                 kvm_cpu_context_t *cpu_ctxt;
1054
1055                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1056                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
1057
1058                 if (err) {
1059                         kvm_err("Cannot map host CPU state: %d\n", err);
1060                         goto out_free_context;
1061                 }
1062         }
1063
1064         /*
1065          * Execute the init code on each CPU.
1066          */
1067         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
1068
1069         /*
1070          * Init HYP view of VGIC
1071          */
1072         err = kvm_vgic_hyp_init();
1073         if (err)
1074                 goto out_free_context;
1075
1076         /*
1077          * Init HYP architected timer support
1078          */
1079         err = kvm_timer_hyp_init();
1080         if (err)
1081                 goto out_free_mappings;
1082
1083 #ifndef CONFIG_HOTPLUG_CPU
1084         free_boot_hyp_pgd();
1085 #endif
1086
1087         kvm_perf_init();
1088
1089         kvm_info("Hyp mode initialized successfully\n");
1090
1091         return 0;
1092 out_free_context:
1093         free_percpu(kvm_host_cpu_state);
1094 out_free_mappings:
1095         free_hyp_pgds();
1096 out_free_stack_pages:
1097         for_each_possible_cpu(cpu)
1098                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1099 out_err:
1100         kvm_err("error initializing Hyp mode: %d\n", err);
1101         return err;
1102 }
1103
1104 static void check_kvm_target_cpu(void *ret)
1105 {
1106         *(int *)ret = kvm_target_cpu();
1107 }
1108
1109 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1110 {
1111         struct kvm_vcpu *vcpu;
1112         int i;
1113
1114         mpidr &= MPIDR_HWID_BITMASK;
1115         kvm_for_each_vcpu(i, vcpu, kvm) {
1116                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1117                         return vcpu;
1118         }
1119         return NULL;
1120 }
1121
1122 /**
1123  * Initialize Hyp-mode and memory mappings on all CPUs.
1124  */
1125 int kvm_arch_init(void *opaque)
1126 {
1127         int err;
1128         int ret, cpu;
1129
1130         if (!is_hyp_mode_available()) {
1131                 kvm_err("HYP mode not available\n");
1132                 return -ENODEV;
1133         }
1134
1135         for_each_online_cpu(cpu) {
1136                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1137                 if (ret < 0) {
1138                         kvm_err("Error, CPU %d not supported!\n", cpu);
1139                         return -ENODEV;
1140                 }
1141         }
1142
1143         cpu_notifier_register_begin();
1144
1145         err = init_hyp_mode();
1146         if (err)
1147                 goto out_err;
1148
1149         err = __register_cpu_notifier(&hyp_init_cpu_nb);
1150         if (err) {
1151                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1152                 goto out_err;
1153         }
1154
1155         cpu_notifier_register_done();
1156
1157         hyp_cpu_pm_init();
1158
1159         kvm_coproc_table_init();
1160         return 0;
1161 out_err:
1162         cpu_notifier_register_done();
1163         return err;
1164 }
1165
1166 /* NOP: Compiling as a module not supported */
1167 void kvm_arch_exit(void)
1168 {
1169         kvm_perf_teardown();
1170 }
1171
1172 static int arm_init(void)
1173 {
1174         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1175         return rc;
1176 }
1177
1178 module_init(arm_init);