ea8da1f4fe495d12a97f8803433a178eb65cb0e8
[firefly-linux-kernel-4.4.55.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
34
35 #include <asm/uaccess.h>
36 #include <asm/ptrace.h>
37 #include <asm/mman.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47
48 #ifdef REQUIRES_VIRT
49 __asm__(".arch_extension        virt");
50 #endif
51
52 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
53 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
54 static unsigned long hyp_default_vectors;
55
56 /* Per-CPU variable containing the currently running vcpu. */
57 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
58
59 /* The VMID used in the VTTBR */
60 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
61 static u8 kvm_next_vmid;
62 static DEFINE_SPINLOCK(kvm_vmid_lock);
63
64 static bool vgic_present;
65
66 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
67 {
68         BUG_ON(preemptible());
69         __get_cpu_var(kvm_arm_running_vcpu) = vcpu;
70 }
71
72 /**
73  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
74  * Must be called from non-preemptible context
75  */
76 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
77 {
78         BUG_ON(preemptible());
79         return __get_cpu_var(kvm_arm_running_vcpu);
80 }
81
82 /**
83  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
84  */
85 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
86 {
87         return &kvm_arm_running_vcpu;
88 }
89
90 int kvm_arch_hardware_enable(void *garbage)
91 {
92         return 0;
93 }
94
95 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
96 {
97         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
98 }
99
100 void kvm_arch_hardware_disable(void *garbage)
101 {
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106         return 0;
107 }
108
109 void kvm_arch_hardware_unsetup(void)
110 {
111 }
112
113 void kvm_arch_check_processor_compat(void *rtn)
114 {
115         *(int *)rtn = 0;
116 }
117
118 void kvm_arch_sync_events(struct kvm *kvm)
119 {
120 }
121
122 /**
123  * kvm_arch_init_vm - initializes a VM data structure
124  * @kvm:        pointer to the KVM struct
125  */
126 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
127 {
128         int ret = 0;
129
130         if (type)
131                 return -EINVAL;
132
133         ret = kvm_alloc_stage2_pgd(kvm);
134         if (ret)
135                 goto out_fail_alloc;
136
137         ret = create_hyp_mappings(kvm, kvm + 1);
138         if (ret)
139                 goto out_free_stage2_pgd;
140
141         kvm_timer_init(kvm);
142
143         /* Mark the initial VMID generation invalid */
144         kvm->arch.vmid_gen = 0;
145
146         return ret;
147 out_free_stage2_pgd:
148         kvm_free_stage2_pgd(kvm);
149 out_fail_alloc:
150         return ret;
151 }
152
153 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
154 {
155         return VM_FAULT_SIGBUS;
156 }
157
158 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
159                            struct kvm_memory_slot *dont)
160 {
161 }
162
163 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
164                             unsigned long npages)
165 {
166         return 0;
167 }
168
169 /**
170  * kvm_arch_destroy_vm - destroy the VM data structure
171  * @kvm:        pointer to the KVM struct
172  */
173 void kvm_arch_destroy_vm(struct kvm *kvm)
174 {
175         int i;
176
177         kvm_free_stage2_pgd(kvm);
178
179         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
180                 if (kvm->vcpus[i]) {
181                         kvm_arch_vcpu_free(kvm->vcpus[i]);
182                         kvm->vcpus[i] = NULL;
183                 }
184         }
185 }
186
187 int kvm_dev_ioctl_check_extension(long ext)
188 {
189         int r;
190         switch (ext) {
191         case KVM_CAP_IRQCHIP:
192                 r = vgic_present;
193                 break;
194         case KVM_CAP_USER_MEMORY:
195         case KVM_CAP_SYNC_MMU:
196         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
197         case KVM_CAP_ONE_REG:
198         case KVM_CAP_ARM_PSCI:
199                 r = 1;
200                 break;
201         case KVM_CAP_COALESCED_MMIO:
202                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
203                 break;
204         case KVM_CAP_ARM_SET_DEVICE_ADDR:
205                 r = 1;
206                 break;
207         case KVM_CAP_NR_VCPUS:
208                 r = num_online_cpus();
209                 break;
210         case KVM_CAP_MAX_VCPUS:
211                 r = KVM_MAX_VCPUS;
212                 break;
213         default:
214                 r = kvm_arch_dev_ioctl_check_extension(ext);
215                 break;
216         }
217         return r;
218 }
219
220 long kvm_arch_dev_ioctl(struct file *filp,
221                         unsigned int ioctl, unsigned long arg)
222 {
223         return -EINVAL;
224 }
225
226 void kvm_arch_memslots_updated(struct kvm *kvm)
227 {
228 }
229
230 int kvm_arch_prepare_memory_region(struct kvm *kvm,
231                                    struct kvm_memory_slot *memslot,
232                                    struct kvm_userspace_memory_region *mem,
233                                    enum kvm_mr_change change)
234 {
235         return 0;
236 }
237
238 void kvm_arch_commit_memory_region(struct kvm *kvm,
239                                    struct kvm_userspace_memory_region *mem,
240                                    const struct kvm_memory_slot *old,
241                                    enum kvm_mr_change change)
242 {
243 }
244
245 void kvm_arch_flush_shadow_all(struct kvm *kvm)
246 {
247 }
248
249 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
250                                    struct kvm_memory_slot *slot)
251 {
252 }
253
254 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
255 {
256         int err;
257         struct kvm_vcpu *vcpu;
258
259         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
260         if (!vcpu) {
261                 err = -ENOMEM;
262                 goto out;
263         }
264
265         err = kvm_vcpu_init(vcpu, kvm, id);
266         if (err)
267                 goto free_vcpu;
268
269         err = create_hyp_mappings(vcpu, vcpu + 1);
270         if (err)
271                 goto vcpu_uninit;
272
273         return vcpu;
274 vcpu_uninit:
275         kvm_vcpu_uninit(vcpu);
276 free_vcpu:
277         kmem_cache_free(kvm_vcpu_cache, vcpu);
278 out:
279         return ERR_PTR(err);
280 }
281
282 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
283 {
284         return 0;
285 }
286
287 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
288 {
289         kvm_mmu_free_memory_caches(vcpu);
290         kvm_timer_vcpu_terminate(vcpu);
291         kmem_cache_free(kvm_vcpu_cache, vcpu);
292 }
293
294 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
295 {
296         kvm_arch_vcpu_free(vcpu);
297 }
298
299 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
300 {
301         return 0;
302 }
303
304 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
305 {
306         int ret;
307
308         /* Force users to call KVM_ARM_VCPU_INIT */
309         vcpu->arch.target = -1;
310
311         /* Set up VGIC */
312         ret = kvm_vgic_vcpu_init(vcpu);
313         if (ret)
314                 return ret;
315
316         /* Set up the timer */
317         kvm_timer_vcpu_init(vcpu);
318
319         return 0;
320 }
321
322 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
323 {
324 }
325
326 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
327 {
328         vcpu->cpu = cpu;
329         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
330
331         /*
332          * Check whether this vcpu requires the cache to be flushed on
333          * this physical CPU. This is a consequence of doing dcache
334          * operations by set/way on this vcpu. We do it here to be in
335          * a non-preemptible section.
336          */
337         if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
338                 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
339
340         kvm_arm_set_running_vcpu(vcpu);
341 }
342
343 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
344 {
345         kvm_arm_set_running_vcpu(NULL);
346 }
347
348 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
349                                         struct kvm_guest_debug *dbg)
350 {
351         return -EINVAL;
352 }
353
354
355 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
356                                     struct kvm_mp_state *mp_state)
357 {
358         return -EINVAL;
359 }
360
361 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
362                                     struct kvm_mp_state *mp_state)
363 {
364         return -EINVAL;
365 }
366
367 /**
368  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
369  * @v:          The VCPU pointer
370  *
371  * If the guest CPU is not waiting for interrupts or an interrupt line is
372  * asserted, the CPU is by definition runnable.
373  */
374 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
375 {
376         return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
377 }
378
379 /* Just ensure a guest exit from a particular CPU */
380 static void exit_vm_noop(void *info)
381 {
382 }
383
384 void force_vm_exit(const cpumask_t *mask)
385 {
386         smp_call_function_many(mask, exit_vm_noop, NULL, true);
387 }
388
389 /**
390  * need_new_vmid_gen - check that the VMID is still valid
391  * @kvm: The VM's VMID to checkt
392  *
393  * return true if there is a new generation of VMIDs being used
394  *
395  * The hardware supports only 256 values with the value zero reserved for the
396  * host, so we check if an assigned value belongs to a previous generation,
397  * which which requires us to assign a new value. If we're the first to use a
398  * VMID for the new generation, we must flush necessary caches and TLBs on all
399  * CPUs.
400  */
401 static bool need_new_vmid_gen(struct kvm *kvm)
402 {
403         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
404 }
405
406 /**
407  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
408  * @kvm The guest that we are about to run
409  *
410  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
411  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
412  * caches and TLBs.
413  */
414 static void update_vttbr(struct kvm *kvm)
415 {
416         phys_addr_t pgd_phys;
417         u64 vmid;
418
419         if (!need_new_vmid_gen(kvm))
420                 return;
421
422         spin_lock(&kvm_vmid_lock);
423
424         /*
425          * We need to re-check the vmid_gen here to ensure that if another vcpu
426          * already allocated a valid vmid for this vm, then this vcpu should
427          * use the same vmid.
428          */
429         if (!need_new_vmid_gen(kvm)) {
430                 spin_unlock(&kvm_vmid_lock);
431                 return;
432         }
433
434         /* First user of a new VMID generation? */
435         if (unlikely(kvm_next_vmid == 0)) {
436                 atomic64_inc(&kvm_vmid_gen);
437                 kvm_next_vmid = 1;
438
439                 /*
440                  * On SMP we know no other CPUs can use this CPU's or each
441                  * other's VMID after force_vm_exit returns since the
442                  * kvm_vmid_lock blocks them from reentry to the guest.
443                  */
444                 force_vm_exit(cpu_all_mask);
445                 /*
446                  * Now broadcast TLB + ICACHE invalidation over the inner
447                  * shareable domain to make sure all data structures are
448                  * clean.
449                  */
450                 kvm_call_hyp(__kvm_flush_vm_context);
451         }
452
453         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
454         kvm->arch.vmid = kvm_next_vmid;
455         kvm_next_vmid++;
456
457         /* update vttbr to be used with the new vmid */
458         pgd_phys = virt_to_phys(kvm->arch.pgd);
459         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
460         kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
461         kvm->arch.vttbr |= vmid;
462
463         spin_unlock(&kvm_vmid_lock);
464 }
465
466 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
467 {
468         int ret;
469
470         if (likely(vcpu->arch.has_run_once))
471                 return 0;
472
473         vcpu->arch.has_run_once = true;
474
475         /*
476          * Initialize the VGIC before running a vcpu the first time on
477          * this VM.
478          */
479         if (unlikely(!vgic_initialized(vcpu->kvm))) {
480                 ret = kvm_vgic_init(vcpu->kvm);
481                 if (ret)
482                         return ret;
483         }
484
485         return 0;
486 }
487
488 static void vcpu_pause(struct kvm_vcpu *vcpu)
489 {
490         wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
491
492         wait_event_interruptible(*wq, !vcpu->arch.pause);
493 }
494
495 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
496 {
497         return vcpu->arch.target >= 0;
498 }
499
500 /**
501  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
502  * @vcpu:       The VCPU pointer
503  * @run:        The kvm_run structure pointer used for userspace state exchange
504  *
505  * This function is called through the VCPU_RUN ioctl called from user space. It
506  * will execute VM code in a loop until the time slice for the process is used
507  * or some emulation is needed from user space in which case the function will
508  * return with return value 0 and with the kvm_run structure filled in with the
509  * required data for the requested emulation.
510  */
511 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
512 {
513         int ret;
514         sigset_t sigsaved;
515
516         if (unlikely(!kvm_vcpu_initialized(vcpu)))
517                 return -ENOEXEC;
518
519         ret = kvm_vcpu_first_run_init(vcpu);
520         if (ret)
521                 return ret;
522
523         if (run->exit_reason == KVM_EXIT_MMIO) {
524                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
525                 if (ret)
526                         return ret;
527         }
528
529         if (vcpu->sigset_active)
530                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
531
532         ret = 1;
533         run->exit_reason = KVM_EXIT_UNKNOWN;
534         while (ret > 0) {
535                 /*
536                  * Check conditions before entering the guest
537                  */
538                 cond_resched();
539
540                 update_vttbr(vcpu->kvm);
541
542                 if (vcpu->arch.pause)
543                         vcpu_pause(vcpu);
544
545                 kvm_vgic_flush_hwstate(vcpu);
546                 kvm_timer_flush_hwstate(vcpu);
547
548                 local_irq_disable();
549
550                 /*
551                  * Re-check atomic conditions
552                  */
553                 if (signal_pending(current)) {
554                         ret = -EINTR;
555                         run->exit_reason = KVM_EXIT_INTR;
556                 }
557
558                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
559                         local_irq_enable();
560                         kvm_timer_sync_hwstate(vcpu);
561                         kvm_vgic_sync_hwstate(vcpu);
562                         continue;
563                 }
564
565                 /**************************************************************
566                  * Enter the guest
567                  */
568                 trace_kvm_entry(*vcpu_pc(vcpu));
569                 kvm_guest_enter();
570                 vcpu->mode = IN_GUEST_MODE;
571
572                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
573
574                 vcpu->mode = OUTSIDE_GUEST_MODE;
575                 vcpu->arch.last_pcpu = smp_processor_id();
576                 kvm_guest_exit();
577                 trace_kvm_exit(*vcpu_pc(vcpu));
578                 /*
579                  * We may have taken a host interrupt in HYP mode (ie
580                  * while executing the guest). This interrupt is still
581                  * pending, as we haven't serviced it yet!
582                  *
583                  * We're now back in SVC mode, with interrupts
584                  * disabled.  Enabling the interrupts now will have
585                  * the effect of taking the interrupt again, in SVC
586                  * mode this time.
587                  */
588                 local_irq_enable();
589
590                 /*
591                  * Back from guest
592                  *************************************************************/
593
594                 kvm_timer_sync_hwstate(vcpu);
595                 kvm_vgic_sync_hwstate(vcpu);
596
597                 ret = handle_exit(vcpu, run, ret);
598         }
599
600         if (vcpu->sigset_active)
601                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
602         return ret;
603 }
604
605 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
606 {
607         int bit_index;
608         bool set;
609         unsigned long *ptr;
610
611         if (number == KVM_ARM_IRQ_CPU_IRQ)
612                 bit_index = __ffs(HCR_VI);
613         else /* KVM_ARM_IRQ_CPU_FIQ */
614                 bit_index = __ffs(HCR_VF);
615
616         ptr = (unsigned long *)&vcpu->arch.irq_lines;
617         if (level)
618                 set = test_and_set_bit(bit_index, ptr);
619         else
620                 set = test_and_clear_bit(bit_index, ptr);
621
622         /*
623          * If we didn't change anything, no need to wake up or kick other CPUs
624          */
625         if (set == level)
626                 return 0;
627
628         /*
629          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
630          * trigger a world-switch round on the running physical CPU to set the
631          * virtual IRQ/FIQ fields in the HCR appropriately.
632          */
633         kvm_vcpu_kick(vcpu);
634
635         return 0;
636 }
637
638 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
639                           bool line_status)
640 {
641         u32 irq = irq_level->irq;
642         unsigned int irq_type, vcpu_idx, irq_num;
643         int nrcpus = atomic_read(&kvm->online_vcpus);
644         struct kvm_vcpu *vcpu = NULL;
645         bool level = irq_level->level;
646
647         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
648         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
649         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
650
651         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
652
653         switch (irq_type) {
654         case KVM_ARM_IRQ_TYPE_CPU:
655                 if (irqchip_in_kernel(kvm))
656                         return -ENXIO;
657
658                 if (vcpu_idx >= nrcpus)
659                         return -EINVAL;
660
661                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
662                 if (!vcpu)
663                         return -EINVAL;
664
665                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
666                         return -EINVAL;
667
668                 return vcpu_interrupt_line(vcpu, irq_num, level);
669         case KVM_ARM_IRQ_TYPE_PPI:
670                 if (!irqchip_in_kernel(kvm))
671                         return -ENXIO;
672
673                 if (vcpu_idx >= nrcpus)
674                         return -EINVAL;
675
676                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
677                 if (!vcpu)
678                         return -EINVAL;
679
680                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
681                         return -EINVAL;
682
683                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
684         case KVM_ARM_IRQ_TYPE_SPI:
685                 if (!irqchip_in_kernel(kvm))
686                         return -ENXIO;
687
688                 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
689                     irq_num > KVM_ARM_IRQ_GIC_MAX)
690                         return -EINVAL;
691
692                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
693         }
694
695         return -EINVAL;
696 }
697
698 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
699                                          struct kvm_vcpu_init *init)
700 {
701         int ret;
702
703         ret = kvm_vcpu_set_target(vcpu, init);
704         if (ret)
705                 return ret;
706
707         /*
708          * Handle the "start in power-off" case by marking the VCPU as paused.
709          */
710         if (__test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
711                 vcpu->arch.pause = true;
712
713         return 0;
714 }
715
716 long kvm_arch_vcpu_ioctl(struct file *filp,
717                          unsigned int ioctl, unsigned long arg)
718 {
719         struct kvm_vcpu *vcpu = filp->private_data;
720         void __user *argp = (void __user *)arg;
721
722         switch (ioctl) {
723         case KVM_ARM_VCPU_INIT: {
724                 struct kvm_vcpu_init init;
725
726                 if (copy_from_user(&init, argp, sizeof(init)))
727                         return -EFAULT;
728
729                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
730         }
731         case KVM_SET_ONE_REG:
732         case KVM_GET_ONE_REG: {
733                 struct kvm_one_reg reg;
734
735                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
736                         return -ENOEXEC;
737
738                 if (copy_from_user(&reg, argp, sizeof(reg)))
739                         return -EFAULT;
740                 if (ioctl == KVM_SET_ONE_REG)
741                         return kvm_arm_set_reg(vcpu, &reg);
742                 else
743                         return kvm_arm_get_reg(vcpu, &reg);
744         }
745         case KVM_GET_REG_LIST: {
746                 struct kvm_reg_list __user *user_list = argp;
747                 struct kvm_reg_list reg_list;
748                 unsigned n;
749
750                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
751                         return -ENOEXEC;
752
753                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
754                         return -EFAULT;
755                 n = reg_list.n;
756                 reg_list.n = kvm_arm_num_regs(vcpu);
757                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
758                         return -EFAULT;
759                 if (n < reg_list.n)
760                         return -E2BIG;
761                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
762         }
763         default:
764                 return -EINVAL;
765         }
766 }
767
768 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
769 {
770         return -EINVAL;
771 }
772
773 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
774                                         struct kvm_arm_device_addr *dev_addr)
775 {
776         unsigned long dev_id, type;
777
778         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
779                 KVM_ARM_DEVICE_ID_SHIFT;
780         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
781                 KVM_ARM_DEVICE_TYPE_SHIFT;
782
783         switch (dev_id) {
784         case KVM_ARM_DEVICE_VGIC_V2:
785                 if (!vgic_present)
786                         return -ENXIO;
787                 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
788         default:
789                 return -ENODEV;
790         }
791 }
792
793 long kvm_arch_vm_ioctl(struct file *filp,
794                        unsigned int ioctl, unsigned long arg)
795 {
796         struct kvm *kvm = filp->private_data;
797         void __user *argp = (void __user *)arg;
798
799         switch (ioctl) {
800         case KVM_CREATE_IRQCHIP: {
801                 if (vgic_present)
802                         return kvm_vgic_create(kvm);
803                 else
804                         return -ENXIO;
805         }
806         case KVM_ARM_SET_DEVICE_ADDR: {
807                 struct kvm_arm_device_addr dev_addr;
808
809                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
810                         return -EFAULT;
811                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
812         }
813         case KVM_ARM_PREFERRED_TARGET: {
814                 int err;
815                 struct kvm_vcpu_init init;
816
817                 err = kvm_vcpu_preferred_target(&init);
818                 if (err)
819                         return err;
820
821                 if (copy_to_user(argp, &init, sizeof(init)))
822                         return -EFAULT;
823
824                 return 0;
825         }
826         default:
827                 return -EINVAL;
828         }
829 }
830
831 static void cpu_init_hyp_mode(void *dummy)
832 {
833         phys_addr_t boot_pgd_ptr;
834         phys_addr_t pgd_ptr;
835         unsigned long hyp_stack_ptr;
836         unsigned long stack_page;
837         unsigned long vector_ptr;
838
839         /* Switch from the HYP stub to our own HYP init vector */
840         __hyp_set_vectors(kvm_get_idmap_vector());
841
842         boot_pgd_ptr = kvm_mmu_get_boot_httbr();
843         pgd_ptr = kvm_mmu_get_httbr();
844         stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
845         hyp_stack_ptr = stack_page + PAGE_SIZE;
846         vector_ptr = (unsigned long)__kvm_hyp_vector;
847
848         __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
849 }
850
851 static int hyp_init_cpu_notify(struct notifier_block *self,
852                                unsigned long action, void *cpu)
853 {
854         switch (action) {
855         case CPU_STARTING:
856         case CPU_STARTING_FROZEN:
857                 cpu_init_hyp_mode(NULL);
858                 break;
859         }
860
861         return NOTIFY_OK;
862 }
863
864 static struct notifier_block hyp_init_cpu_nb = {
865         .notifier_call = hyp_init_cpu_notify,
866 };
867
868 #ifdef CONFIG_CPU_PM
869 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
870                                     unsigned long cmd,
871                                     void *v)
872 {
873         if (cmd == CPU_PM_EXIT) {
874                 cpu_init_hyp_mode(NULL);
875                 return NOTIFY_OK;
876         }
877
878         return NOTIFY_DONE;
879 }
880
881 static struct notifier_block hyp_init_cpu_pm_nb = {
882         .notifier_call = hyp_init_cpu_pm_notifier,
883 };
884
885 static void __init hyp_cpu_pm_init(void)
886 {
887         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
888 }
889 #else
890 static inline void hyp_cpu_pm_init(void)
891 {
892 }
893 #endif
894
895 /**
896  * Inits Hyp-mode on all online CPUs
897  */
898 static int init_hyp_mode(void)
899 {
900         int cpu;
901         int err = 0;
902
903         /*
904          * Allocate Hyp PGD and setup Hyp identity mapping
905          */
906         err = kvm_mmu_init();
907         if (err)
908                 goto out_err;
909
910         /*
911          * It is probably enough to obtain the default on one
912          * CPU. It's unlikely to be different on the others.
913          */
914         hyp_default_vectors = __hyp_get_vectors();
915
916         /*
917          * Allocate stack pages for Hypervisor-mode
918          */
919         for_each_possible_cpu(cpu) {
920                 unsigned long stack_page;
921
922                 stack_page = __get_free_page(GFP_KERNEL);
923                 if (!stack_page) {
924                         err = -ENOMEM;
925                         goto out_free_stack_pages;
926                 }
927
928                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
929         }
930
931         /*
932          * Map the Hyp-code called directly from the host
933          */
934         err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
935         if (err) {
936                 kvm_err("Cannot map world-switch code\n");
937                 goto out_free_mappings;
938         }
939
940         /*
941          * Map the Hyp stack pages
942          */
943         for_each_possible_cpu(cpu) {
944                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
945                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
946
947                 if (err) {
948                         kvm_err("Cannot map hyp stack\n");
949                         goto out_free_mappings;
950                 }
951         }
952
953         /*
954          * Map the host CPU structures
955          */
956         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
957         if (!kvm_host_cpu_state) {
958                 err = -ENOMEM;
959                 kvm_err("Cannot allocate host CPU state\n");
960                 goto out_free_mappings;
961         }
962
963         for_each_possible_cpu(cpu) {
964                 kvm_cpu_context_t *cpu_ctxt;
965
966                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
967                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
968
969                 if (err) {
970                         kvm_err("Cannot map host CPU state: %d\n", err);
971                         goto out_free_context;
972                 }
973         }
974
975         /*
976          * Execute the init code on each CPU.
977          */
978         on_each_cpu(cpu_init_hyp_mode, NULL, 1);
979
980         /*
981          * Init HYP view of VGIC
982          */
983         err = kvm_vgic_hyp_init();
984         if (err)
985                 goto out_free_context;
986
987 #ifdef CONFIG_KVM_ARM_VGIC
988                 vgic_present = true;
989 #endif
990
991         /*
992          * Init HYP architected timer support
993          */
994         err = kvm_timer_hyp_init();
995         if (err)
996                 goto out_free_mappings;
997
998 #ifndef CONFIG_HOTPLUG_CPU
999         free_boot_hyp_pgd();
1000 #endif
1001
1002         kvm_perf_init();
1003
1004         kvm_info("Hyp mode initialized successfully\n");
1005
1006         return 0;
1007 out_free_context:
1008         free_percpu(kvm_host_cpu_state);
1009 out_free_mappings:
1010         free_hyp_pgds();
1011 out_free_stack_pages:
1012         for_each_possible_cpu(cpu)
1013                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1014 out_err:
1015         kvm_err("error initializing Hyp mode: %d\n", err);
1016         return err;
1017 }
1018
1019 static void check_kvm_target_cpu(void *ret)
1020 {
1021         *(int *)ret = kvm_target_cpu();
1022 }
1023
1024 /**
1025  * Initialize Hyp-mode and memory mappings on all CPUs.
1026  */
1027 int kvm_arch_init(void *opaque)
1028 {
1029         int err;
1030         int ret, cpu;
1031
1032         if (!is_hyp_mode_available()) {
1033                 kvm_err("HYP mode not available\n");
1034                 return -ENODEV;
1035         }
1036
1037         for_each_online_cpu(cpu) {
1038                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1039                 if (ret < 0) {
1040                         kvm_err("Error, CPU %d not supported!\n", cpu);
1041                         return -ENODEV;
1042                 }
1043         }
1044
1045         err = init_hyp_mode();
1046         if (err)
1047                 goto out_err;
1048
1049         err = register_cpu_notifier(&hyp_init_cpu_nb);
1050         if (err) {
1051                 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
1052                 goto out_err;
1053         }
1054
1055         hyp_cpu_pm_init();
1056
1057         kvm_coproc_table_init();
1058         return 0;
1059 out_err:
1060         return err;
1061 }
1062
1063 /* NOP: Compiling as a module not supported */
1064 void kvm_arch_exit(void)
1065 {
1066         kvm_perf_teardown();
1067 }
1068
1069 static int arm_init(void)
1070 {
1071         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1072         return rc;
1073 }
1074
1075 module_init(arm_init);