963a543bde4d8a44d4c2923b1a35b5eebbc69c95
[firefly-linux-kernel-4.4.55.git] / Documentation / cpu-freq / governors.txt
1      CPU frequency and voltage scaling code in the Linux(TM) kernel
2
3
4                          L i n u x    C P U F r e q
5
6                       C P U F r e q   G o v e r n o r s
7
8                    - information for users and developers -
9
10
11                     Dominik Brodowski  <linux@brodo.de>
12             some additions and corrections by Nico Golde <nico@ngolde.de>
13
14
15
16    Clock scaling allows you to change the clock speed of the CPUs on the
17     fly. This is a nice method to save battery power, because the lower
18             the clock speed, the less power the CPU consumes.
19
20
21 Contents:
22 ---------
23 1.   What is a CPUFreq Governor?
24
25 2.   Governors In the Linux Kernel
26 2.1  Performance
27 2.2  Powersave
28 2.3  Userspace
29 2.4  Ondemand
30 2.5  Conservative
31 2.6  Interactive
32
33 3.   The Governor Interface in the CPUfreq Core
34
35
36
37 1. What Is A CPUFreq Governor?
38 ==============================
39
40 Most cpufreq drivers (in fact, all except one, longrun) or even most
41 cpu frequency scaling algorithms only offer the CPU to be set to one
42 frequency. In order to offer dynamic frequency scaling, the cpufreq
43 core must be able to tell these drivers of a "target frequency". So
44 these specific drivers will be transformed to offer a "->target"
45 call instead of the existing "->setpolicy" call. For "longrun", all
46 stays the same, though.
47
48 How to decide what frequency within the CPUfreq policy should be used?
49 That's done using "cpufreq governors". Two are already in this patch
50 -- they're the already existing "powersave" and "performance" which
51 set the frequency statically to the lowest or highest frequency,
52 respectively. At least two more such governors will be ready for
53 addition in the near future, but likely many more as there are various
54 different theories and models about dynamic frequency scaling
55 around. Using such a generic interface as cpufreq offers to scaling
56 governors, these can be tested extensively, and the best one can be
57 selected for each specific use.
58
59 Basically, it's the following flow graph:
60
61 CPU can be set to switch independently   |         CPU can only be set
62       within specific "limits"           |       to specific frequencies
63
64                                  "CPUfreq policy"
65                 consists of frequency limits (policy->{min,max})
66                      and CPUfreq governor to be used
67                          /                    \
68                         /                      \
69                        /                       the cpufreq governor decides
70                       /                        (dynamically or statically)
71                      /                         what target_freq to set within
72                     /                          the limits of policy->{min,max}
73                    /                                \
74                   /                                  \
75         Using the ->setpolicy call,              Using the ->target call,
76             the limits and the                    the frequency closest
77              "policy" is set.                     to target_freq is set.
78                                                   It is assured that it
79                                                   is within policy->{min,max}
80
81
82 2. Governors In the Linux Kernel
83 ================================
84
85 2.1 Performance
86 ---------------
87
88 The CPUfreq governor "performance" sets the CPU statically to the
89 highest frequency within the borders of scaling_min_freq and
90 scaling_max_freq.
91
92
93 2.2 Powersave
94 -------------
95
96 The CPUfreq governor "powersave" sets the CPU statically to the
97 lowest frequency within the borders of scaling_min_freq and
98 scaling_max_freq.
99
100
101 2.3 Userspace
102 -------------
103
104 The CPUfreq governor "userspace" allows the user, or any userspace
105 program running with UID "root", to set the CPU to a specific frequency
106 by making a sysfs file "scaling_setspeed" available in the CPU-device
107 directory.
108
109
110 2.4 Ondemand
111 ------------
112
113 The CPUfreq governor "ondemand" sets the CPU depending on the
114 current usage. To do this the CPU must have the capability to
115 switch the frequency very quickly.  There are a number of sysfs file
116 accessible parameters:
117
118 sampling_rate: measured in uS (10^-6 seconds), this is how often you
119 want the kernel to look at the CPU usage and to make decisions on
120 what to do about the frequency.  Typically this is set to values of
121 around '10000' or more. It's default value is (cmp. with users-guide.txt):
122 transition_latency * 1000
123 Be aware that transition latency is in ns and sampling_rate is in us, so you
124 get the same sysfs value by default.
125 Sampling rate should always get adjusted considering the transition latency
126 To set the sampling rate 750 times as high as the transition latency
127 in the bash (as said, 1000 is default), do:
128 echo `$(($(cat cpuinfo_transition_latency) * 750 / 1000)) \
129     >ondemand/sampling_rate
130
131 show_sampling_rate_min:
132 The sampling rate is limited by the HW transition latency:
133 transition_latency * 100
134 Or by kernel restrictions:
135 If CONFIG_NO_HZ is set, the limit is 10ms fixed.
136 If CONFIG_NO_HZ is not set or no_hz=off boot parameter is used, the
137 limits depend on the CONFIG_HZ option:
138 HZ=1000: min=20000us  (20ms)
139 HZ=250:  min=80000us  (80ms)
140 HZ=100:  min=200000us (200ms)
141 The highest value of kernel and HW latency restrictions is shown and
142 used as the minimum sampling rate.
143
144 show_sampling_rate_max: THIS INTERFACE IS DEPRECATED, DON'T USE IT.
145
146 up_threshold: defines what the average CPU usage between the samplings
147 of 'sampling_rate' needs to be for the kernel to make a decision on
148 whether it should increase the frequency.  For example when it is set
149 to its default value of '95' it means that between the checking
150 intervals the CPU needs to be on average more than 95% in use to then
151 decide that the CPU frequency needs to be increased.  
152
153 ignore_nice_load: this parameter takes a value of '0' or '1'. When
154 set to '0' (its default), all processes are counted towards the
155 'cpu utilisation' value.  When set to '1', the processes that are
156 run with a 'nice' value will not count (and thus be ignored) in the
157 overall usage calculation.  This is useful if you are running a CPU
158 intensive calculation on your laptop that you do not care how long it
159 takes to complete as you can 'nice' it and prevent it from taking part
160 in the deciding process of whether to increase your CPU frequency.
161
162 sampling_down_factor: this parameter controls the rate at which the
163 kernel makes a decision on when to decrease the frequency while running
164 at top speed. When set to 1 (the default) decisions to reevaluate load
165 are made at the same interval regardless of current clock speed. But
166 when set to greater than 1 (e.g. 100) it acts as a multiplier for the
167 scheduling interval for reevaluating load when the CPU is at its top
168 speed due to high load. This improves performance by reducing the overhead
169 of load evaluation and helping the CPU stay at its top speed when truly
170 busy, rather than shifting back and forth in speed. This tunable has no
171 effect on behavior at lower speeds/lower CPU loads.
172
173
174 2.5 Conservative
175 ----------------
176
177 The CPUfreq governor "conservative", much like the "ondemand"
178 governor, sets the CPU depending on the current usage.  It differs in
179 behaviour in that it gracefully increases and decreases the CPU speed
180 rather than jumping to max speed the moment there is any load on the
181 CPU.  This behaviour more suitable in a battery powered environment.
182 The governor is tweaked in the same manner as the "ondemand" governor
183 through sysfs with the addition of:
184
185 freq_step: this describes what percentage steps the cpu freq should be
186 increased and decreased smoothly by.  By default the cpu frequency will
187 increase in 5% chunks of your maximum cpu frequency.  You can change this
188 value to anywhere between 0 and 100 where '0' will effectively lock your
189 CPU at a speed regardless of its load whilst '100' will, in theory, make
190 it behave identically to the "ondemand" governor.
191
192 down_threshold: same as the 'up_threshold' found for the "ondemand"
193 governor but for the opposite direction.  For example when set to its
194 default value of '20' it means that if the CPU usage needs to be below
195 20% between samples to have the frequency decreased.
196
197
198 2.6 Interactive
199 ---------------
200
201 The CPUfreq governor "interactive" is designed for latency-sensitive,
202 interactive workloads. This governor sets the CPU speed depending on
203 usage, similar to "ondemand" and "conservative" governors.  However,
204 the governor is more aggressive about scaling the CPU speed up in
205 response to CPU-intensive activity.
206
207 Sampling the CPU load every X ms can lead to under-powering the CPU
208 for X ms, leading to dropped frames, stuttering UI, etc.  Instead of
209 sampling the cpu at a specified rate, the interactive governor will
210 check whether to scale the cpu frequency up soon after coming out of
211 idle.  When the cpu comes out of idle, a timer is configured to fire
212 within 1-2 ticks.  If the cpu is very busy between exiting idle and
213 when the timer fires then we assume the cpu is underpowered and ramp
214 to MAX speed.
215
216 If the cpu was not sufficiently busy to immediately ramp to MAX speed,
217 then governor evaluates the cpu load since the last speed adjustment,
218 choosing the highest value between that longer-term load or the
219 short-term load since idle exit to determine the cpu speed to ramp to.
220
221 The tuneable values for this governor are:
222
223 min_sample_time: The minimum amount of time to spend at the current
224 frequency before ramping down. This is to ensure that the governor has
225 seen enough historic cpu load data to determine the appropriate
226 workload.  Default is 80000 uS.
227
228 hispeed_freq: An intermediate "hi speed" at which to initially ramp
229 when CPU load hits the value specified in go_hispeed_load.  If load
230 stays high for the amount of time specified in above_hispeed_delay,
231 then speed may be bumped higher.  Default is maximum speed.
232
233 go_hispeed_load: The CPU load at which to ramp to the intermediate "hi
234 speed".  Default is 85%.
235
236 above_hispeed_delay: Once speed is set to hispeed_freq, wait for this
237 long before bumping speed higher in response to continued high load.
238 Default is 20000 uS.
239
240 timer_rate: Sample rate for reevaluating cpu load when the system is
241 not idle.  Default is 20000 uS.
242
243 input_boost: If non-zero, boost speed of all CPUs to hispeed_freq on
244 touchscreen activity.  Default is 0.
245
246 boost: If non-zero, immediately boost speed of all CPUs to at least
247 hispeed_freq until zero is written to this attribute.  If zero, allow
248 CPU speeds to drop below hispeed_freq according to load as usual.
249
250 boostpulse: Immediately boost speed of all CPUs to hispeed_freq for
251 min_sample_time, after which speeds are allowed to drop below
252 hispeed_freq according to load as usual.
253
254
255 3. The Governor Interface in the CPUfreq Core
256 =============================================
257
258 A new governor must register itself with the CPUfreq core using
259 "cpufreq_register_governor". The struct cpufreq_governor, which has to
260 be passed to that function, must contain the following values:
261
262 governor->name -            A unique name for this governor
263 governor->governor -        The governor callback function
264 governor->owner -           .THIS_MODULE for the governor module (if 
265                             appropriate)
266
267 The governor->governor callback is called with the current (or to-be-set)
268 cpufreq_policy struct for that CPU, and an unsigned int event. The
269 following events are currently defined:
270
271 CPUFREQ_GOV_START:   This governor shall start its duty for the CPU
272                      policy->cpu
273 CPUFREQ_GOV_STOP:    This governor shall end its duty for the CPU
274                      policy->cpu
275 CPUFREQ_GOV_LIMITS:  The limits for CPU policy->cpu have changed to
276                      policy->min and policy->max.
277
278 If you need other "events" externally of your driver, _only_ use the
279 cpufreq_governor_l(unsigned int cpu, unsigned int event) call to the
280 CPUfreq core to ensure proper locking.
281
282
283 The CPUfreq governor may call the CPU processor driver using one of
284 these two functions:
285
286 int cpufreq_driver_target(struct cpufreq_policy *policy,
287                                  unsigned int target_freq,
288                                  unsigned int relation);
289
290 int __cpufreq_driver_target(struct cpufreq_policy *policy,
291                                    unsigned int target_freq,
292                                    unsigned int relation);
293
294 target_freq must be within policy->min and policy->max, of course.
295 What's the difference between these two functions? When your governor
296 still is in a direct code path of a call to governor->governor, the
297 per-CPU cpufreq lock is still held in the cpufreq core, and there's
298 no need to lock it again (in fact, this would cause a deadlock). So
299 use __cpufreq_driver_target only in these cases. In all other cases 
300 (for example, when there's a "daemonized" function that wakes up 
301 every second), use cpufreq_driver_target to lock the cpufreq per-CPU
302 lock before the command is passed to the cpufreq processor driver.
303